LINEAR INTEGRATED CIRCUITS

PART-03

DC Analysis of BJT Differential Amplifier Circuit

```
DR SATVIR SINGH
DEPARTMENT OF ECE
IKG PUNJAB TECHNICAL UNIVERSITY
```

KAPURTHALA-144603 (PB) INDIA

DC Analysis

It involves determination of operating-point current $I_{C Q}$ and voltage $V_{C E Q}$. This analysis remains same for all types of BJT Differential Amplifiers, whether it is a

1. Dual Input Balanced Output
2. Dual Input Unbalanced Output
3. Single-Input Balanced Output
4. Single-Input Unbalanced Output

DC Analysis of Differential Amplifier

Important consideration for DC Analysis

1. Identical BJTs $Q_{1} \& Q_{2}$ are connected in symmetry
2. Hence, they will have same $I_{C Q}$ and $V_{C E Q}$
3. Amplifier has two DC supplies; $+V_{C C}$ and $-V_{E E}$
4. Reduce input AC signals to zero; $V_{1}=V_{2}=0$.
5. Source resistances are same; $R_{S 1}=R_{S 2}=R_{S}$

Determination of I_{C}

To determine I_{C} apply let's use KVL

$$
\begin{equation*}
R_{S} I_{B}+V_{B E}+2 I_{E} R_{E}=V_{E E} \tag{1}
\end{equation*}
$$

We know that $I_{B}=\left(I_{C} \cong I_{E}\right) / \beta$. Let's put I_{B} in (1)

$$
\begin{gathered}
R_{S} I_{E} / \beta+V_{B E}+2 I_{E} R_{E}=V_{E E} \\
\left(R_{S} / \beta+2 R_{E}\right) I_{E}=V_{E E}-V_{B E} \\
I_{E}=\frac{V_{E E}-V_{B E}}{\left(R_{S} / \beta+2 R_{E}\right)} \cong I_{C}
\end{gathered}
$$

Further $R_{S} / \beta \ll 2 R_{E}$

$$
I_{C}=I_{E}=\frac{V_{E E}-V_{B E}}{2 R_{E}}
$$

Determination of $V_{C E Q}$

$V_{C E}$ is given as

$$
\begin{equation*}
V_{C E}=V_{C}-V_{E} \tag{2}
\end{equation*}
$$

If we assume $R_{C 1}=R_{C 2}=R_{C}$, using KVL collector terminal voltage

$$
V_{C}=V_{C C}-I_{C} R_{C}
$$

Further, $V_{B E}=V_{B}-V_{E}$ but $V_{B}=-I_{B} R_{S} \cong 0$ that
leads to $V_{E} \cong-V_{B E}$. Substitute V_{C} and V_{E} in (2)

$$
\begin{gathered}
V_{C E}=\left(V_{C C}-I_{C} R_{C}\right)-\left(-V_{B E}\right) \\
V_{C E}=V_{C C}+V_{B E}-I_{C} R_{C}
\end{gathered}
$$

Numerical Problem

Determine operating points current and voltage when $R_{s 1}=R_{S 2}=50 \Omega, R_{E}=4.7 \mathrm{k} \Omega$ and $R_{C}=2.2 \mathrm{k} \Omega$. Transistors are biased using $\pm 10 \mathrm{~V}$ voltage supplies. Assume DC current gain $\beta=100$.

Operating point Collector current I_{C} is given by

$$
\begin{gathered}
I_{C}=\frac{V_{E E}-V_{B E}}{\left(R_{S} / \beta+2 R_{E}\right)} \\
I_{C}=\frac{10-0.7}{(50 / 100+2 * 4.7 \mathrm{k})}=\frac{9.3}{0.5+9400} \\
I_{C}=0.989 \mathrm{~mA}
\end{gathered}
$$

Numerical Problem

Whereas operating point voltage $V_{C E Q}$ is given as

$$
\begin{gathered}
V_{C E Q}=V_{C C}+V_{B E}-I_{C} R_{C} \\
V_{C E Q}=10+0.7-0.989 \mathrm{~m} * 2.2 \mathrm{k} \\
V_{C E Q}=10+0.7-2.18 \\
V_{C E Q}=8.52 \mathrm{~V}
\end{gathered}
$$

