

LINEAR INTEGRATED CIRCUITS

PART-03 DC Analysis of BJT Differential Amplifier Circuit

DR SATVIR SINGH DEPARTMENT OF ECE IKG PUNJAB TECHNICAL UNIVERSITY KAPURTHALA-144603 (PB) INDIA

Do Like, Share & Subscribe

DC Analysis

It involves determination of operating-point current I_{CQ}

and voltage V_{CEQ} . This analysis remains same for all types of BJT Differential Amplifiers, whether it is a

- 1. Dual Input Balanced Output
- 2. Dual Input Unbalanced Output
- 3. Single-Input Balanced Output
- 4. Single-Input Unbalanced Output

DC Analysis of Differential Amplifier

Important consideration for DC Analysis

- 1. Identical BJTs $Q_1 \& Q_2$ are connected in symmetry
- 2. Hence, they will have same I_{CQ} and V_{CEQ}
- 3. Amplifier has two DC supplies; $+V_{CC}$ and $-V_{EE}$
- 4. Reduce input AC signals to zero; $V_1 = V_2 = 0$.
- 5. Source resistances are same; $R_{s1} = R_{s2} = R_s$

Determination of *I*_C

To determine I_C apply let's use KVL

 $R_{s}I_{B} + V_{BE} + 2I_{E}R_{E} = V_{EE} \quad (1)$

We know that $I_B = (I_C \cong I_E)/\beta$. Let's put I_B in (1) $R_S I_E/\beta + V_{BE} + 2I_E R_E = V_{EE}$ $(R_E/\beta + 2R_E)I_E - V_E = V_E$

$$(K_S/p + 2K_E)I_E - V_{EE} - V_{BE}$$

$$I_E = \frac{V_{EE} - V_{BE}}{(R_s/\beta + 2R_E)} \cong I_C$$

Further $R_s/\beta \ll 2R_E$

$$I_C = I_E = \frac{V_{EE} - V_{BE}}{2R_E}$$

Determination of *V*_{*CEQ*}

 V_{CE} is given as

$$V_{CE} = V_C - V_E \tag{2}$$

If we assume $R_{C1} = R_{C2} = R_C$, using KVL collector

terminal voltage

 $V_C = V_{CC} - I_C R_C$

Further, $V_{BE} = V_B - V_E$ but $V_B = -I_B R_s \cong 0$ that leads to $V_E \cong -V_{BE}$. Substitute V_C and V_E in (2) $V_{CE} = (V_{CC} - I_C R_C) - (-V_{BE})$ $V_{CE} = V_{CC} + V_{BE} - I_C R_C$

Numerical Problem

Determine operating points current and voltage when $R_{s1} = R_{S2} = 50\Omega$, $R_E = 4.7k\Omega$ and $R_C = 2.2k\Omega$. Transistors are biased using ±10V voltage supplies. Assume DC current gain $\beta = 100$.

Operating point Collector current I_C is given by

$$I_{C} = \frac{V_{EE} - V_{BE}}{(R_{s}/\beta + 2R_{E})}$$
$$I_{C} = \frac{10 - 0.7}{(50/100 + 2 * 4.7k)} = \frac{9.3}{0.5 + 9400}$$
$$I_{C} = 0.080m\Lambda$$

 $I_{C} = 0.989 \text{mA}$

Numerical Problem

Whereas operating point voltage V_{CEQ} is

given as

 $V_{CEQ} = V_{CC} + V_{BE} - I_C R_C$ $V_{CEQ} = 10 + 0.7 - 0.989 \text{m} * 2.2 \text{k}$ $V_{CEQ} = 10 + 0.7 - 2.18$ $V_{CEQ} = 8.52 \text{V}$

