http://DrSatvir.in

LINEAR INTEGRATED CIRCUITS

PART-04

AC Analysis of BJT Differential Amplifier Circuit

DR SATVIR SINGH

DEPARTMENT OF ECE IKG PUNJAB TECHNICAL UNIVERSITY KAPURTHALA-144603 (PB) INDIA

Do Like, Share & Subscribe

AC Analysis

AC analysis of a BJT Differential Amplifier involves determination of

- 1. Voltage Gain
- 2. Input Impedance
- 3. Output Resistance

Dual Input Balanced Output Differential Amplifier

AC Analysis of Differential Amplifier

Important consideration for AC Analysis

- 1. Both $Q_1 \& Q_2$ are identical BJTs
- 2. Resistances $R_{S1} = R_{S2} = R_S \& R_{C1} = R_{C2} = R_C$
- 3. DC supplies will be grounded
- 4. BJTs are replace with equivalent r-model

AC Analysis - Voltage Gain

Differential Voltage Gain
$$A_d = \frac{V_o}{V_1 - V_2}$$

$$V_o = i_{c1}R_c - i_{c2}R_c$$

KVL in loop I:
$$V_1 = R_s i_{b1} + r_e i_{e1} + (i_{e1} + i_{e2})R_E$$

KVL in loop II:
$$V_2 = R_s i_{b2} + r_e i_{e2} + (i_{e1} + i_{e2})R_E$$

Substitute
$$i_{b1} = \frac{i_{e1}}{\beta}$$
 and $i_{b2} = \frac{i_{e2}}{\beta}$

$$V_1 = R_s \frac{i_{e1}}{\beta} + r_e i_{e1} + (i_{e1} + i_{e2})R_E$$

$$V_1 = \left(\frac{R_s}{\beta} + r_e + R_E\right)i_{e1} + R_E i_{e2}$$

Similarly,
$$V_2 = R_E i_{e1} + \left(\frac{R_S}{\beta} + r_e + R_E\right) i_{e2}$$

AC Analysis - Voltage Gain

Consider typical values $R_S/\beta = 50/100$. Let's

ignore R_S/β as $R_S/\beta \ll R_E \& r_e$

$$(r_e + R_E)i_{e1} + R_Ei_{e2} = V_1$$

$$R_E i_{e1} + (r_e + R_E)i_{e2} = V_2$$

Solve using **Crammer's Rule**

$$\begin{bmatrix} r_e + R_E & R_E \\ R_E & r_e + R_E \end{bmatrix} \begin{bmatrix} i_{e1} \\ i_{e2} \end{bmatrix} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

Determinant of resistance matrix

$$\Delta = \begin{vmatrix} r_e + R_E & R_E \\ R_E & r_e + R_E \end{vmatrix} = (r_e + R_E)^2 - R_E^2$$

$$\Delta_1 = \begin{vmatrix} V_1 & R_E \\ V_2 & r_e + R_E \end{vmatrix} = (R_E + r_e)V_1 - V_2 R_E$$

Current i_{e1} is given as

$$i_{e1} = \frac{\Delta_1}{\Delta} = \frac{(R_E + r_e)V_1 - V_2R_E}{(r_e + R_E)^2 - R_E^2} = i_{c1}$$

$$\Delta_2 = \begin{vmatrix} r_e + R_E & V_1 \\ R_E & V_2 \end{vmatrix} = (R_E + r_e)V_2 - V_1 R_E$$

Current i_{e2} is given as

$$i_{e2} = \frac{\Delta_2}{\Delta} = \frac{(R_E + r_e)V_2 - V_1R_E}{(r_e + R_E)^2 - R_E^2} = i_{c2}$$

AC Analysis - Voltage Gain

Output voltage $V_o = R_c(i_{c1} - i_{c2})$

Put values of i_{c1} and i_{c2}

$$V_o = R_c \left(\frac{(R_E + r_e)V_1 - R_E V_2}{(r_e + R_E)^2 - R_E^2} - \frac{(R_E + r_e)V_2 - R_E V_1}{(r_e + R_E)^2 - R_E^2} \right)$$

$$V_o = R_c \left(\frac{R_E V_1 + r_e V_1 - R_E V_2 - R_E V_2 - r_e V_2 + R_E V_1}{(r_e + R_E)^2 - R_E^2} \right)$$

$$V_o = R_c \left(\frac{2R_E V_1 + r_e V_1 - 2R_E V_2 - r_e V_2}{r_e^2 + 2R_E r_e + R_E^2 - R_E^2} \right)$$

$$V_o = R_c \left(\frac{(2R_E + r_e)V_1 - (2R_E + r_e)V_2}{r_e^2 + 2R_E r_e} \right)$$

$$V_o = R_c \left(\frac{(2R_E + r_e)(V_1 - V_2)}{r_e(r_e + 2R_E)} \right)$$

$$V_o = \frac{R_C}{r_e} (V_1 - V_2)$$

Finally, Voltage Gain the Differential Amplifier is given as

$$A_d = \frac{V_o}{V_1 - V_2} = \frac{R_C}{r_e}$$

AC Analysis – Input Resistance

Input Resistance at first source of a Dual Input Balanced Output Differential Amplifier are given as

$$R_{i1} = \frac{V_1}{i_{b1}}\Big|_{V_2=0} = \frac{V_1}{i_{e1}/\beta}\Big|_{V_2=0} = \frac{\beta V_1}{i_{e1}}\Big|_{V_2=0}$$

Putting the value of i_{e1}

$$R_{i1} = \frac{\beta V_1}{\frac{(R_E + r_e)V_1 - V_2 R_E}{(r_e + R_E)^2 - R_E^2}} \Big|_{V_2 = 0}$$

$$R_{i1} = \frac{\beta r_e V_1 (r_e^2 + 2R_E r_e + R_E^2 - R_E^2)}{(R_E + r_e)V_1}$$

$$R_{i1} = \frac{\beta r_e (r_e + 2R_E)}{R_E + r_e}$$

Since $(R_E \approx 3k) \gg (r_e \approx 30)$ therefore, $r_e + 2R_E \approx 2R_E$ and $r_e + R_E \approx R_E$.

Finally, input resistance is given as

$$R_{i1} = 2\beta r_e$$

Similarly, Input Resistance at second input terminal is given as

$$R_{i2} = \frac{V_2}{i_{b2}}\Big|_{V_1=0} = \frac{\beta r_e (r_e + 2R_E)}{R_E + r_e} = 2\beta r_e$$

AC Analysis - Output Resistance & Current Gain

Output Resistance is measured at the collector terminal with respect to ground

$$R_{o1} = R_{o2} = R_C$$

Current Gain of a Differential Amplifier is undefined.

Differential Amplifier is generally used as Voltage Amplifier and not as Current or Power Amplifier.

Numerical Problem

A Differential Amplifier with has $R_C=2.2k\Omega$, $R_E=4.7k\Omega$, $R_{S1}=R_{S2}=50\Omega$, $V_{CC}=+10V$, $V_{EE}=-10V$, $\beta=100$ and $V_{BE}=0.7$. Determine its (a) Voltage Gain (b) Input Resistance (c) Output Resistance

Differential Voltage Gain formula is

$$A_d = \frac{V_o}{V_d} = \frac{R_C}{r_e}$$

However, $r_e = \frac{25mV}{I_E}$ at room temperature. But $I_E = ?$

Numerical Problem

During DC Analysis we following expression to determine I_E

$$I_C = \frac{V_{EE} - V_{BE}}{(R_S/\beta + 2R_E)} = I_E$$

Putting given values

$$I_E = \frac{10 - 0.7}{(50/100 + 2 * 4.7k)} = \mathbf{0.989} mA$$

Further,

$$r_e = \frac{25mV}{I_E} = \frac{25mV}{0.989mA} = 25.3\Omega$$

Numerical Problem

Using Voltage Gain formula

$$A_d = \frac{R_C}{r_e} = \frac{2.2k\Omega}{25.3\Omega} = 86.96$$

Input Resistances are given as

$$R_{i1} = R_{i2} = 2\beta r_e = 2 * 100 * 25.3\Omega = 5.06k\Omega$$

Output Resistances are given by

$$R_{o1} = R_{o2} = R_C = 2.2k\Omega$$

http://DrSatvir.in

LINEAR INTEGRATED CIRCUITS

Thank You

DR SATVIR SINGH

DEPARTMENT OF ECE IKG PUNJAB TECHNICAL UNIVERSITY KAPURTHALA-144603 (PB) INDIA

Do Like, Share & Subscribe