LINEAR INTEGRATED CIRCUITS

PART-04
 AC Analysis of BJT Differential Amplifier Circuit

```
DR SATVIR SINGH
DEPARTMENT OF ECE
IKG PUNJAB TECHNICAL UNIVERSITY
KAPURTHALA-144603(PB) INDIA
Do Like, Share & Subscribe
```


AC Analysis

AC analysis of a BJT Differential Amplifier involves determination of

1. Voltage Gain
2. Input Impedance
3. Output Resistance

Dual Input Balanced Output Differential Amplifier

AC Analysis of Differential Amplifier

Important consideration for AC Analysis

1. Both $Q_{1} \& Q_{2}$ are identical BJTs
2. Resistances $R_{s 1}=R_{s 2}=R_{s} \& R_{C 1}=R_{C 2}=R_{C}$
3. DC supplies will be grounded
4. BJTs are replace with equivalent r-model

AC Analysis - Voltage Gain

Differential Voltage Gain $A_{d}=\frac{V_{o}}{V_{1}-V_{2}}$

$$
V_{o}=i_{c 1} R_{c}-i_{c 2} R_{c}
$$

KVL in loop I: $\quad V_{1}=R_{S} i_{b 1}+r_{e} i_{e 1}+\left(i_{e 1}+i_{e 2}\right) R_{E}$
KVL in loop II: $\quad V_{2}=R_{S} i_{b 2}+r_{e} i_{e 2}+\left(i_{e 1}+i_{e 2}\right) R_{E}$
Substitute $i_{b 1}=\frac{i_{e 1}}{\beta}$ and $i_{b 2}=\frac{i_{e 2}}{\beta}$

$$
\begin{aligned}
V_{1} & =R_{S} \frac{i_{e 1}}{\beta}+r_{e} i_{e 1}+\left(i_{e 1}+i_{e 2}\right) R_{E} \\
V_{1} & =\left(\frac{R_{S}}{\beta}+r_{e}+R_{E}\right) i_{e 1}+R_{E} i_{e 2}
\end{aligned}
$$

Similarly, $\quad V_{2}=R_{E} i_{e 1}+\left(\frac{R_{s}}{\beta}+r_{e}+R_{E}\right) i_{e 2}$

AC Analysis - Voltage Gain

Consider typical values $R_{S} / \beta=50 / 100$. Let's ignore R_{S} / β as $R_{S} / \beta \ll R_{E} \& r_{e}$

$$
\begin{aligned}
& \left(r_{e}+R_{E}\right) i_{e 1}+R_{E} i_{e 2}=V_{1} \\
& R_{E} i_{e 1}+\left(r_{e}+R_{E}\right) i_{e 2}=V_{2}
\end{aligned}
$$

Solve using Crammer's Rule

$$
\left[\begin{array}{cc}
r_{e}+R_{E} & R_{E} \\
R_{E} & r_{e}+R_{E}
\end{array}\right]\left[\begin{array}{c}
i_{e 1} \\
i_{e 2}
\end{array}\right]=\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
$$

Determinant of resistance matrix

$$
\Delta=\left|\begin{array}{cc}
r_{e}+R_{E} & R_{E} \\
R_{E} & r_{e}+R_{E}
\end{array}\right|=\left(r_{e}+R_{E}\right)^{2}-R_{E}^{2}
$$

$$
\Delta_{1}=\left|\begin{array}{cc}
V_{1} & R_{E} \\
V_{2} & r_{e}+R_{E}
\end{array}\right|=\left(R_{E}+r_{e}\right) V_{1}-V_{2} R_{E}
$$

Current $i_{e 1}$ is given as

$$
i_{e 1}=\frac{\Delta_{1}}{\Delta}=\frac{\left(R_{E}+r_{e}\right) V_{1}-V_{2} R_{E}}{\left(r_{e}+R_{E}\right)^{2}-R_{E}^{2}}=i_{c 1}
$$

$$
\Delta_{2}=\left|\begin{array}{cc}
r_{e}+R_{E} & V_{1} \\
R_{E} & V_{2}
\end{array}\right|=\left(R_{E}+r_{e}\right) V_{2}-V_{1} R_{E}
$$

Current $i_{e 2}$ is given as

$$
i_{e 2}=\frac{\Delta_{2}}{\Delta}=\frac{\left(R_{E}+r_{e}\right) V_{2}-V_{1} R_{E}}{\left(r_{e}+R_{E}\right)^{2}-R_{E}^{2}}=i_{c 2}
$$

AC Analysis - Voltage Gain

Output voltage $V_{o}=R_{c}\left(i_{c 1}-i_{c 2}\right)$
Put values of $i_{c 1}$ and $i_{c 2}$

$$
\begin{gathered}
V_{o}=R_{C}\left(\frac{\left(R_{E}+r_{e}\right) V_{1}-R_{E} V_{2}}{\left(r_{e}+R_{E}\right)^{2}-R_{E}^{2}}-\frac{\left(R_{E}+r_{e}\right) V_{2}-R_{E} V_{1}}{\left(r_{e}+R_{E}\right)^{2}-R_{E}^{2}}\right) \\
V_{o}=R_{c}\left(\frac{R_{E} V_{1}+r_{e} V_{1}-R_{E} V_{2}-R_{E} V_{2}-r_{e} V_{2}+R_{E} V_{1}}{\left(r_{e}+R_{E}\right)^{2}-R_{E}^{2}}\right) \\
V_{o}=R_{c}\left(\frac{2 R_{E} V_{1}+r_{e} V_{1}-2 R_{E} V_{2}-r_{e} V_{2}}{r_{e}^{2}+2 R_{E} r_{e}+R_{E}^{2}-R_{E}^{2}}\right)
\end{gathered}
$$

$$
\begin{gathered}
V_{o}=R_{c}\left(\frac{\left(2 R_{E}+r_{e}\right) V_{1}-\left(2 R_{E}+r_{e}\right) V_{2}}{r_{e}^{2}+2 R_{E} r_{e}}\right) \\
V_{o}=R_{c}\left(\frac{\left(2 R_{E}+r_{e}\right)\left(V_{1}-V_{2}\right)}{r_{e}\left(r_{e}+2 R_{E}\right)}\right) \\
V_{o}=\frac{R_{C}}{r_{e}}\left(V_{1}-V_{2}\right)
\end{gathered}
$$

Finally, Voltage Gain the Differential Amplifier is given as

$$
A_{d}=\frac{V_{o}}{V_{1}-V_{2}}=\frac{R_{C}}{r_{e}}
$$

AC Analysis - Input Resistance

Input Resistance at first source of a Dual Input Balanced Output Differential Amplifier are given as

$$
R_{i 1}=\left.\frac{V_{1}}{i_{b 1}}\right|_{V_{2}=0}=\left.\frac{V_{1}}{i_{e 1} / \beta}\right|_{V_{2}=0}=\left.\frac{\beta V_{1}}{i_{e 1}}\right|_{V_{2}=0}
$$

Putting the value of $i_{e 1}$

$$
\begin{gathered}
R_{i 1}=\frac{\beta V_{1}}{\left.\frac{\left(R_{E}+r_{e}\right) V_{1}-V_{2} R_{E}}{\left(r_{e}+R_{E}\right)^{2}-R_{E}^{2}}\right|_{V_{2}=0}} \\
R_{i 1}=\frac{\beta r_{e} V_{1}\left(r_{e}^{2}+2 R_{E} r_{e}+R_{E}^{2}-R_{E}^{2}\right)}{\left(R_{E}+r_{e}\right) V_{1}} \\
R_{i 1}=\frac{\beta r_{e}\left(r_{e}+2 R_{E}\right)}{R_{E}+r_{e}}
\end{gathered}
$$

Since $\left(R_{E} \approx 3 k\right) \gg\left(r_{e} \approx 30\right)$ therefore, $r_{e}+2 R_{E} \approx 2 R_{E}$ and $r_{e}+R_{E} \approx R_{E}$.

Finally, input resistance is given as

$$
R_{i 1}=2 \beta r_{e}
$$

Similarly, Input Resistance at second input terminal is given as

$$
R_{i 2}=\left.\frac{V_{2}}{i_{b 2}}\right|_{V_{1}=0}=\frac{\beta r_{e}\left(r_{e}+2 R_{E}\right)}{R_{E}+r_{e}}=2 \beta r_{e}
$$

AC Analysis - Output Resistance \& Current Gain

Output Resistance is measured at the collector terminal with respect to ground

$$
R_{o 1}=R_{o 2}=R_{C}
$$

Current Gain of a Differential Amplifier is undefined.
Differential Amplifier is generally used as Voltage Amplifier and not as Current or Power Amplifier.

Numerical Problem

A Differential Amplifier with has $R_{C}=2.2 k \Omega$, $R_{E}=4.7 k \Omega, \quad R_{S 1}=R_{S 2}=50 \Omega, \quad V_{C C}=+10 \mathrm{~V}$, $V_{E E}=-10 \mathrm{~V}, \beta=100$ and $V_{B E}=0.7$. Determine its (a) Voltage Gain (b) Input Resistance (c) Output Resistance

Differential Voltage Gain formula is

$$
A_{d}=\frac{V_{o}}{V_{d}}=\frac{R_{C}}{r_{e}}
$$

However, $r_{e}=\frac{25 \mathrm{mV}}{I_{E}}$ at room temperature. But $I_{E}=$?

Numerical Problem

During DC Analysis we following expression to determine I_{E}

$$
I_{C}=\frac{V_{E E}-V_{B E}}{\left(R_{S} / \beta+2 R_{E}\right)}=I_{E}
$$

Putting given values

$$
I_{E}=\frac{10-0.7}{(50 / 100+2 * 4.7 k)}=\mathbf{0 . 9 8 9 m} \mathbf{A}
$$

Further,

$$
r_{e}=\frac{25 m V}{I_{E}}=\frac{25 m V}{0.989 m A}=25.3 \Omega
$$

Numerical Problem

Using Voltage Gain formula

$$
A_{d}=\frac{R_{C}}{r_{e}}=\frac{2.2 k \Omega}{25.3 \Omega}=\mathbf{8 6 . 9 6}
$$

Input Resistances are given as

$$
R_{i 1}=R_{i 2}=2 \beta r_{e}=2 * 100 * 25.3 \Omega=5.06 \mathbf{k} \Omega
$$

Output Resistances are given by

$$
R_{o 1}=R_{o 2}=R_{C}=2.2 \boldsymbol{k} \Omega
$$

http://DrSatvir.in

LINEAR INTEGRATED CIRCUITS

Thank You

DR SATVIR SINGH

DEPARTMENT OF ECE
IKG PUNJAB TECHNICAL UNIVERSITY
KAPURTHALA-144603 (PB) INDIA

