

LINEAR INTEGRATED CIRCUITS

Instrumentation Amplifier

http://DrSatvir.in

Instrumentation Amplifier

- Most of home & industrial appliances involve measurements of physical parameters for auto-control of processes. Such instruments uses transducers to convert physical quantities into electrical signals, which usually need to be amplified.
- For example, strain gauge undergoes change in **resistance** (an electrical parameter) when subjected to **pressure** (a physical parameter). Corresponding voltage signals are very small that need to be amplified.
- Many a times amplifications are also required to activate next stages of processes.
- Op-Amp based differential amplifier preferred amplifier to amplify very weak signals due to its high gain and capability of suppression of ambient noise.

Block Diagram

Instrumentation Amplifier

 R_T is the transducer resistance under normal conditions. It observes change ΔR when subjected to physical changes.

Under unbalance condition

Instrumentation Amplifier

 A_1 and A_2 are unity gain non-inverting amplifiers with high input impedance and draw negligible current from transducer, hence provide isolation.

Next stage is differential amplifier A_3 that suppresses common noise and amplifies the difference between both inputs. V_{DC}

$$V_o = \frac{R_F}{R_1} \frac{\Delta R V_{DC}}{2(2R + \Delta R)}$$

Since, $2R + \Delta R \approx 2R$, Output

of Instrumentation Amplifier is

LINEAR INTEGRATED CIRCUITS

Thank You

Do Like, Share & Subscribe

http://DrSatvir.in