Dr Satvir Singh

LINEAR INTEGRATED CIRCUITS

$$
3-05
$$

V to I and I to V Converter

Do Like, Share \& Subscribe

Voltage to Current Converter - I

In the shown circuit, load resistance R_{L} is floating (i.e., load resistance is not connected to ground).

The differential input $v_{d}=v_{\text {in }}-v_{f} \approx 0$, therefore,

$$
\begin{gathered}
v_{i n}=v_{f}=i_{o} R_{1} \\
i_{o}=\frac{v_{i n}}{R_{1}}
\end{gathered}
$$

The input voltage $v_{\text {in }}$ is converted into current $\frac{v_{i n}}{R_{1}}$, that flows through load resistance R_{L}.

Load current i_{o} can be precisely controlled using R_{1}

Voltage to Current Converter - II

In the shown circuit, load resistance R_{L} is grounded Applying KCL at node V_{1}

$$
\begin{gathered}
I_{L}=I_{1}+I_{2} \\
I_{L}=\frac{v_{\text {in }}-V_{1}}{R}+\frac{v_{o}-V_{1}}{R} \\
v_{i n}+v_{o}-2 V_{1}=I_{L} R \\
V_{1}=\frac{v_{\text {in }}+v_{o}-I_{L} R}{2}
\end{gathered}
$$

Voltage gain of the non-inverting amplifier is $1+\frac{R}{R}=2$

Output voltage of the amplifier is

$$
v_{o}=v_{i n}+v_{o}-I_{L} R \quad \rightarrow \quad I_{L}=v_{i n} / R
$$

Current to Voltage Converter

The shown circuit is an inverting amplifier
Output voltage is given as

$$
\begin{equation*}
v_{o}=-\frac{R_{F}}{R_{1}} v_{i n} \tag{1}
\end{equation*}
$$

If $i_{\text {in }}$ is the input current

$$
i_{i n}=\frac{v_{i n}}{R_{1}}
$$

Output voltage from (1)

$$
v_{o}=-i_{i n} R_{F}
$$

Hence, the circuit converts input current into voltage

Dr Satvir Singh

LINEAR INTEGRATED CIRCUITS

Thank You

Do Like, Share \& Subscribe
http://DrSatvir.in

