

LINEAR INTEGRATED CIRCUITS

V to I and I to V Converter

Do Like, Share & Subscribe

http://DrSatvir.in

Voltage to Current Converter – I

In the shown circuit, load resistance R_L is floating (i.e., load resistance is not connected to ground).

The differential input $v_d = v_{in} - v_f \approx 0$, therefore,

$$v_{in} = v_f = i_o R$$
$$i_o = \frac{v_{in}}{R_1}$$

The input voltage v_{in} is converted into current $\frac{v_{in}}{R_1}$, that flows through load resistance R_L .

Load current i_o can be precisely controlled using R_1

Voltage to Current Converter – II

In the shown circuit, load resistance R_L is grounded

Applying KCL at node V_1

$$I_{L} = I_{1} + I_{2}$$

$$I_{L} = \frac{v_{in} - V_{1}}{R} + \frac{v_{o} - V_{1}}{R}$$

$$v_{in} + v_{o} - 2V_{1} = I_{L}R$$

$$V_{1} = \frac{v_{in} + v_{o} - I_{L}R}{2}$$

Voltage gain of the non-inverting amplifier is $1 + \frac{R}{R} = 2$

Output voltage of the amplifier is

$$v_o = v_{in} + v_o - I_L R \quad \rightarrow \quad I_L = v_{in}/R$$

Current to Voltage Converter

The shown circuit is an inverting amplifier

Output voltage is given as

$$v_o = -\frac{R_F}{R_1} v_{in} \tag{1}$$

If *i*_{*in*} is the input current

$$i_{in} = \frac{v_{in}}{R_1}$$

Output voltage from (1)

 $v_o = -i_{in}R_F$

Hence, the circuit converts input current into voltage

LINEAR INTEGRATED CIRCUITS

Thank You

Do Like, Share & Subscribe

http://DrSatvir.in