

LINEAR INTEGRATED CIRCUITS

Log and Anti-log Amplifier

Do Like, Share & Subscribe

http://DrSatvir.in

Logarithmic Amplifier

In the shown circuit, current flowing through *R* can be written as,

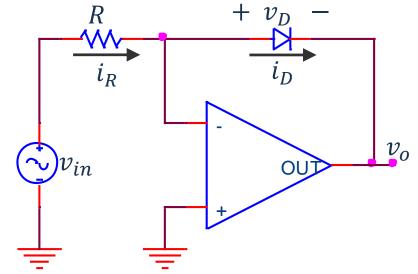
$$i_R = \frac{v_{in}}{R} \tag{1}$$

The voltage across diode is v_o and current that flows through diode is given by diode equation.

$$i_D = I_S(e^{\frac{v_D}{\eta V_T}} - 1) \approx I_S e^{\frac{v_D}{\eta V_T}} \qquad (2$$

Since $i_R = i_D$, therefore,

$$\frac{v_{in}}{R} = I_S e^{\frac{-v_o}{\eta V_T}}$$
$$v_o = -\eta V_T \ln \frac{v_{in}}{I_S R}$$



Note that v_o depends upon I_S that further temperature dependent parameter

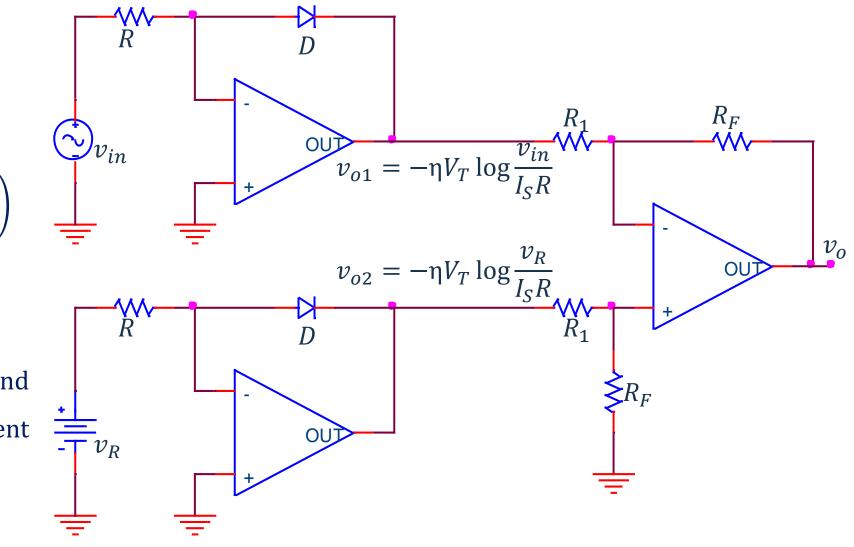
Improved Logarithmic Amplifier

The final output voltage

$$v_o = -\frac{R_F}{R_1} (V_{o2} - V_{o1})$$
$$v_o = -\frac{R_F}{R_1} \eta V_T \left(\ln \frac{v_{in}}{I_S R} - \ln \frac{v_R}{I_S R} \right)$$

$$v_o = -\frac{R_F}{R_1} \eta V_T \ln \frac{v_{in}}{v_R}$$

Here, output v_o do not depend upon temperature dependent reverse saturation current, I_S .



Anti-logarithmic Amplifier

Here, diode and resistance places and exchanged

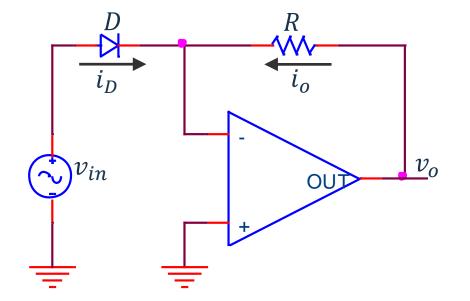
and diode current is given as

 $i_D = I_S e^{\frac{v_D}{\eta V_T}}$

Since $i_o = -i_D$, the output voltage v_o can be written as

$$v_o = i_o R = -RI_S e^{\frac{v_D}{\eta V_T}}$$

Note that v_o bears the antilog relationship with input voltage v_{in}



LINEAR INTEGRATED CIRCUITS

Thank You

Do Like, Share & Subscribe

http://DrSatvir.in