Dr Satvir Singh

LINEAR INTEGRATED CIRCUITS

3-06

Log and Anti-log Amplifier

Do Like, Share \& Subscribe

Logarithmic Amplifier

In the shown circuit, current flowing through R can be written as,

$$
\begin{equation*}
i_{R}=\frac{v_{i n}}{R} \tag{1}
\end{equation*}
$$

The voltage across diode is v_{o} and current that flows through diode is given by diode equation.

$$
\begin{equation*}
i_{D}=I_{S}\left(e^{\frac{v_{D}}{\eta V_{T}}}-1\right) \approx I_{S} e^{\frac{v_{D}}{\eta V_{T}}} \tag{2}
\end{equation*}
$$

Since $i_{R}=i_{D}$, therefore,

$$
\begin{gathered}
\frac{v_{i n}}{R}=I_{S} e^{\frac{-v_{o}}{\eta V_{T}}} \\
v_{o}=-\eta V_{T} \ln \frac{v_{i n}}{I_{S} R}
\end{gathered}
$$

Note that v_{o} depends upon I_{S} that further temperature dependent parameter

Improved Logarithmic Amplifier

The final output voltage

$$
\begin{gathered}
v_{o}=-\frac{R_{F}}{R_{1}}\left(V_{o 2}-V_{o 1}\right) \\
v_{o}=-\frac{R_{F}}{R_{1}} \eta V_{T}\left(\ln \frac{v_{i n}}{I_{S} R}-\ln \frac{v_{R}}{I_{S} R}\right) \\
v_{o}=-\frac{R_{F}}{R_{1}} \eta V_{T} \ln \frac{v_{i n}}{v_{R}}
\end{gathered}
$$

Here, output v_{o} do not depend upon temperature dependent reverse saturation current, I_{S}.

Anti-logarithmic Amplifier

Here, diode and resistance places and exchanged and diode current is given as

$$
i_{D}=I_{S} e^{\frac{v_{D}}{\eta V_{T}}}
$$

Since $i_{o}=-i_{D}$, the output voltage v_{o} can be written as

$$
v_{o}=i_{o} R=-R I_{S} e^{\frac{v_{D}}{\eta V_{T}}}
$$

Note that v_{o} bears the antilog relationship with input voltage $v_{\text {in }}$

Dr Satvir Singh

LINEAR INTEGRATED CIRCUITS

Thank You

Do Like, Share \& Subscribe
http://DrSatvir.in

