Dr Satvir Singh

LINEAR INTEGRATED CIRCUITS

3-07

Op-Amp Integrator \& Differentiator Circuits

Integrator Circuit

Since non-inverting terminal is grounded therefore, current through R is given as

$$
i=\frac{v_{\text {in }}}{R}
$$

The output voltage across capacitor C is given by

$$
\begin{gathered}
v_{o}=-\frac{1}{C} \int i d t=-\frac{1}{C} \int \frac{v_{i n}}{R} d t \\
v_{o}=-\frac{1}{R C} \int v_{i n} d t
\end{gathered}
$$

Note that output voltage is integration of the input voltage

Differentiator Circuit

Places of resistance and capacitances are exchanged here. Accordingly, current through C is given as

$$
i=C \frac{d v_{i n}}{d t}
$$

Same current flows through resistance R. The output voltage is given by

$$
v_{o}=-i R=-R C \frac{d v_{i n}}{d t}
$$

Hence, the output voltage is differentiation of the input voltage

Dr Satvir Singh

LINEAR INTEGRATED CIRCUITS

Thank You

Do Like, Share \& Subscribe
http://DrSatvir.in

