

LINEAR INTEGRATED CIRCUITS

Band Pass, Band Stop & All Pass Filters

Do Like, Share & Subscribe

Outline

- 1. Butterworth First Order High Pass Filter
- 2. Butterworth Second Order High Pass Filter

First Order Butterworth HPF

The output of non-inverting amplifier is

$$v_o = \left(1 + \frac{R_F}{R_1}\right) v_1$$

Where v_1 voltage is given as

$$v_1 = \frac{R}{R + \frac{1}{j2\pi fC}} v_{in} = \frac{j2\pi fCR}{1 + j2\pi fCR} v_{in}$$

Output of the non-inverting amplifier

$$v_o = \left(1 + \frac{R_F}{R_1}\right) \frac{j2\pi fRC}{1 + j2\pi fRC} v_{in}$$
$$\frac{v_o}{v_{in}} = A_F \frac{j2\pi fRC}{1 + j2\pi fRC} = A_F \frac{j(f/f_L)}{1 + j(f/f_L)}$$

Here, $f_L = \frac{1}{2\pi RC}$ low cut-off frequency. Magnitude can be determined as $\left|\frac{v_o}{v_{in}}\right| = \frac{A_F(f/f_L)}{\sqrt{1 + (f/f_L)^2}}$

Second Order Butterworth LPF

As we determined the cut-off frequency in Second Order Butterworth LPF, we can determine cut-off frequency of Second Order Butterworth HPF also.

$$f_L = \frac{1}{2\pi\sqrt{R_2R_3C_2C_3}}$$

For simplicity, assume $R_2 = R_3 = R$ and $C_2 = C_3 = C$

$$f_L = \frac{1}{2\pi RC}$$

LINEAR INTEGRATED CIRCUITS

Thank You

Do Like, Share & Subscribe

http://DrSatvir.in