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Abstract—In this paper, we present a comprehensive 

survey on parallelizing computations involved in 

optimization problem, on GPU using CUDA. Many 

researchers have reported significant speedup using 

CUDA on GPU. Stochastic algorithms, Metaheuristic 

algorithms and Heuristic algorithms i.e., Mixed Integer 

Non-linear Programming (MINLP), Central Force 

Optimization (CFO), Genetic Algorithms (GA), Particle 

Swarm Optimization (PSO), etc. are exploring/exploiting 

the processing power of GPU. GPGPU shows tremendous 

speedups of 6x to 7x in Steady State Genetic Algorithm to 

10,000x speedups in CFO. GPU have multithread cores 

with high memory bandwidth which allow for greater 

ease of use and also more radially support a layer body of 

applications. 

 

Index Terms—GPU, GPGPU, CUDA, MINLP, 

PGMOEA, CGA, CFO, Optimization Algorithms. 

 

I. INTRODUCTION 

General Purpose GPU Computing really took off 

when CUDA and Stream arrived in late 2006 [1]. 

GPU constitute a tremendous step towards a usable, 

suitable, scalable and manageable future-proof 

programming model [2]. Optimization workloads are 

very parallel, and so GPUs developed as large-scale 

parallel computation machines [3] [4] [5] [6]. 

Originally GPGPU processing was done by tricking 

the GPU by disguising computation loads as graphic 

loads [7]. With the advent and large availability of 

General Purpose Graphics Processing Units and the 

development and straightforward applicability of the 

Compute Unified Device Architecture platform, 

several applications are being benefited by the 

reduction of the computing time [8]. GPGPU-based 

architecture, aiming at improving the performance of 

computationally demanding optimizations for 

identifiable specific mapping parameters, one can 

reduce total execution time drastically and also, 

improve greatly the optimization process 

convergence. Application performance can be 

significantly improved by applying memory-access 

pattern-aware optimizations that can exploit 

knowledge of the characteristics of each access 

pattern [3]. To evaluate the effectiveness of our 

methodology, we have created a tool that 

incorporates our proposed algorithmic optimizations 

and report on execution speedup using selected 

benchmark kernels that cover a wide range of 

memory access patterns commonly found in GPGPU 

workloads [9]. Graphics Processing Units (GPUs) are 

widely used among developers and researchers as 

accelerators for applications outside the domain of 

traditional computer graphics. In particular, GPUs 

have become a viable parallel accelerator for 

scientific computing with low investment in the 

necessary hardware. 
 

II. MINLP OPTIMIZATION 

With the increasing advent of GPGPU using CUDA, 

the stochastic algorithm of advanced Genetic 

Algorithm is used to solve non-convex mixed integer 

Non-linear Programming (MINLP) and non-convex 

Non-linear Programming (NLP) problems [10]. 

MINLP refers to mathematical programming 

algorithms that can optimize both continuous and 

integer variables, in a context of nonlinearities in the 

objective function and/or constraints. MINLP 

problems involve the simultaneous optimization of 

discrete and continuous variables. These problems 

often arise where one is trying to simultaneously 

optimize the system structure and parameters. This is 

difficult because optimal topology is dependent upon 

parameter levels and vice versa [10]. In many design 

optimization problems, the structural topology 

influences the optimal parameter settings so a simple 

de-coupling approach does not work: it is often not 



possible to isolate these and optimize each separately. 

Finally, the complexity of these problems depends 

upon the form of the objective function. In the past, 

solution techniques typically depended upon 

objective functions that were single-attribute and 

linear (i.e., minimize cost). However, real problems 

often require multi-attribute objectives such as 

minimizing costs while maximizing safety and/or 

reliability, ensuring feasibility, and meeting 

scheduled deadlines. In these cases, the goal is to 

optimize over a set of performance indices which 

may be combined in a nonlinear objective function. 

Through this algorithm the intensity of each 

individual is beamed using entropy measures. The 

results of the tests shows a significant speedup of 42x 

with single precision and 20x with double precision 

over nVidia Fermi C2050 GPU [10]. 

 

III. PGMOEA 

The general Purpose GPU is efficiently used in 

optimizing the multiple objective problems. The 

particle gradient Multiobjective Evolutionary 

Algorithm (PGMOEA) is used to solve optimization 

problems. PGMOEA is first experimented on CPU 

and then after parallelizing the algorithm executed 

upon GPU which formed a great speedup results [11]. 

The experiment is conducted upon two different 

examples. The first example shows a speedup of 9x 

with nVidia GeForce GTX285 then CPU result, 

while the second example is 10x faster than that of 

CPU [11]. The speedup comparison is shown below 

in Table 1. 
Table 1. Speedup Comparison (source [11]) 

Algorithm  Example 1 Example 2 

 Time(s) Speedup Time(s) Speedup 

PGMOEA on 

GPU 

0.97 9.95 0.83 10.64 

PGMOEA on 
CPU 

9.01 1.04 8.02 1.10 

 
IV. CELLULAR GENETIC ALGORITHM 

Genetic Algorithm have a subclass known as Cellular 

Genetic Algorithm (cGA) which provides the data of 

population structured in several specified topologies 

[12]. The cGA is compared upon CPU, single GPU 

and multiGPU. The nVidia GTX285 multiGPU test 

shows a speedup of 8 to 771 times then single GPU 

[12]. The multiGPU is more prominent in paralleling 

the algorithm and producing accurate results as there 

is a need of special maintenance to perform same 

experiment upon single GPU. 

 

 

V. DIFFERENTIAL EVOLUTIONARY 

ALGORITHM 

GPGPU is proved to be great architectural unit in 

reducing the processing time [13]. The Differential 

Algorithm which is one of the part of Evolutionary 

Algorithm is implemented upon CPU using C-

CUDA. The motivating features of Differential 

Algorithm are easy for parallelization and 

convergence properties which intern gives an 

appropriate result. The algorithm is first tested upon 

CPU then on nVidia GTX285 with 1GB GDDR3 

GPU with the speedup outcomes. GPU gives 20x to 

35x faster results which proves GPU is much more 

effective and efficient than Differential Algorithm on 

CPU [13]. The Speedup comparison results are 

shown in Table 1. 

 

VI. CELLULAR AUTOMATA 

Cellular Automata have various real life application 

like physical system modeling, road traffic 

simulation, artificial life simulation, etc [14], [15], 

[16]. Cellular automata design evolved from 

evolutionary algorithm and a part of Genetic 

Algorithm which is complex in nature. The 

Algorithm is parallelized and implemented upon 

GPGPU shows an efficient reduction in execution 

time. The rules of Cellular Automata take longer time 

period inevolution in sequential execution. The same 

Genetic Algorithm shows 31.34x to 314.94x speedup 

when executed upon nVidia GeForce FX280 GPU 

which is a significant reduction in execution time 

[17]. 

VII. ACCELERATING PSO 

PSO is a metaheuristic algorithm works by having a 

swarm of particles [18]. These particles are moved 

around in the search-space according to a few simple 

formulae. The movements of the particles are guided 

by their own best known position in the search-space 

as well as the entire swarm’s best known position 

[19]. When improved positions are being discovered 

these will then come to guide the movements of the 

swarm. Particle Swarm Optimization (PSO) is one of 

the type of Evolutionary Algorithm used to optimize 

the multiple objective problems. When an 

optimization problem involves more than one 

objective function, the task of finding one or more 

optimal solutions is known as multi-objective 

optimization [18]. The objects are having random 

velocities and positions. The algorithm is tested upon 

three different platforms of C, Matlab and C-CUDA. 

The parallel implementation of PSO on nVidia GTX 

280 gives 17 to 41 times speedup in computing time 

in C-CUDA as compared with the C and Matlab as 

Shown in Fig.1 [20]. 

 



 
Figure 1. Computing time for C-CUDA, C AND MATLAB 

(Source [20]) 

 

VIII. STEADY STATE GENETIC ALGORITHM 

ON GPU 

The optimization problem is effectively solved by the 

means of Evolutionary Computing [21]. The steady 

state Genetic Algorithm used to access optimization 

algorithms. These algorithms basically have selection 

for the reproduction and selection of survival 

implementation with concurrent kernel execution 

[22]. The study is first performed upon CPU then 

with nVidia GeForce GTX480 GPU gives a speedup 

of 3x to 6x then the previous implementation on CPU 

[12]. The executed time is greatly reduced using 

general purpose GPU. The population individual data 

is accessed parallelaly which effectively speedup the 

process. 

 

IX. BINARY-CODED AND REAL-CODED 

GENETIC ALGORITHM 

Genetic Algorithm is tested and evaluated on parallel 

implementation on C-CUDA API on the parameters 

like population size, number of threads, problem size 

and problem of differing complexities with variation 

in the population individuals [12]. For an efficient 

implementation on GPGPU the solution is thoroughly 

implemented along with the operators like random 

number generation, initialization, selection operation, 

and mutation operations [13]. The nVidia GeForce 

8800GTX shows overall speedup of 40-400 on three 

different test problems [23]. Thus parallel 

implementation is more effective then sequential 

process as compared with clock time and accuracy. 

 

X. CENTRAL FORCE OPTIMIZATION (CFO) 

The metaheurestic algorithm Central Force 

Optimization (CFO) is implemented upon GPGPU 

using local neighborhood and implemented CFO 

concepts [24]. The calculation of CFO is dependent 

upon the movement of probes which are scattered all 

over the space. The probes then slowly move towards 

the probe having highest mass or fitness. PR-CFO is 

the most evaluated algorithm with the measures of 

initial position and acceleration vectors, fitness 

evaluation and probe movements [25]. The test 

problems are having the dimension of 30 to 100 of 

four different examples of Pseudo random CFO (PR-

CFO). The PR-CFO is tested with four test types i.e. 

Ring, Standard, CUDA, CUDA Ring. PR-CFO 

shows a speedup of 4 to 400 using CUDA. PR-CFO 

ring and PR-CFO CUDA ring on nVidia Tesla C1060 

shows 10,000 times faster results as compared with 

standard PR-CFO algorithm [25]. 

 

XI. CONCLUSION 

In this paper we present different optimization 

algorithm with tremendous speedup in the 

computation time. MINLP archived an overall 

speedup of 20x to 42x using nVidia Tesla C2050 

GPU as compared to intel Core i7 920 CPU 

processor. The new binary-coded and real-coded 

Genetic Algorithm using CUDA leads to a 

performance improvement with the speedup of 40x to 

400x. Central Force Optimization (CFO) results in 

reduction of computing time and a speedup of 

10,000x. The Cellular Automata shows 314.97x as 

compared with the sequential implements. 
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