
CUDA for GPGPU Applications – A Survey

Sarabjeet Singh

Department of CSE

SBS State Technical Campus,

Ferozepur-152004

sarabjeet_singh13@yahoo.com

Satvir Singh

Department of ECE

SBS State Technical Campus,

Ferozepur-152004

satvir15@gmail.com

Vijay Banga

Department of ECE

Amritsar College of Engg.&

Tech.,Amritsar-143001

v_banga@rediffmail.com

Durlabh Chauhan

Department of ECE

SBS State Technical Campus,

Ferozepur-152004

abhishekthakur421@yahoo.com

Abstract–Since inception man is trying to speed up things that too

in parallel. From bullock carts to supersonic, the journey is still

going on. GPGPU (General Purpose Computing with Graphics

Processing Unit) is the concept combined with CUDA (Compute

Unified Device Architecture) for parallel processing. Numerous

applications exist where CUDA has been used by researchers for

parallel implementations. This paper surveys different

applications where CUDA C has been used for parallel

processing. In every sphere, parallel programming has its own

advantages. It can be implemented in any sphere with restriction

that parallel operations exist in the phenomenon. This paper

discusses Fluid Simulation, Remote Sensing, Weather

Forecasting, K-Means, Bayesian Computation, Molecular

Dynamics, Artificial Intelligence Algorithms and Vehicle Routing

where CUDA can be used for GPGPU. CUDA exploits the

parallel processing power of GPU, that has number of cores to

speed up calculations.

Index Terms—Graphics Processing Unit, CUDA, Artificial

Intelligence, Survey, GPGPU

I. INTRODUCTION

Latest advancements in parallel computing exploit

GPGPUs that have multi-core architecture which supports

parallel computations especially required for graphical

processing. They devote more transistors for arithmetic and

logical operations as compared to data caching and flow

control compared to a CPU. Due to processing demand GPUs

have advanced rapidly and beating the CPUs in terms of

number of cores and their computational power. As nVidia has

launched CUDA software development kit in 2007, the use of

GPU’s computational powers for general purpose computing

has become easy. It gives an API built upon the C language

that can be used to write parallel computer programs. The GPU

device operates as a coprocessor to the host i.e., CPU, running

C program. This paper presents a survey on different problems

where CUDA and GPU can be used for parallel processing.

II. FLUID ANIMATION

Smoothed Particle Hydrodynamics (SPH) is a mesh free

lagrangian particle method used for modeling flow of fluid. It

was introduced by Lucy and Monaghan in 1977[1]. Due to

certain disadvantages of existing methods SPH was

investigated for scientific analysis of fluid flow, carried out

with few particles. The first implementation of SPH on GPU

was realized by T. Harada [1].

SPH is a relatively new Fluid Dynamics technique to

simulate motion of fluid particles. SPH is a particle based

parallelizable technique, hence, more suitable for GPU based

architecture [2]. Equations of SPH need to be more intensive in

computation; hence the animation’s computational part may be

executed in real time. However, the major hurdle in SPH based

animation is the tuning of SPH parameters like smoothing

radius and rest density. A small change in any of these

parameter results into almost explosion of fluid. As no proper

guidelines are available for tuning SPH, considerable amount

of efforts are required to find these parameters using brute

force approach.

Parallel Algorithm Design is the most important issue in

any application development for CUDA. Even though most of

the algorithms introduced till today are already designed for

some of earlier parallel architectures, it is not possible to adopt

them without modification for CUDA. Besides complexity of

algorithm, many additional factors also contribute significantly

in deciding execution performance of any parallel algorithm are

Memory access pattern, inter-processor communication

overheads, synchronization overheads, and the degree of

parallelism.

CUDA can be used for implementation of stable fluids that

deals with internal and moving boundaries. The parallel

implementation of CUDA is much faster as compared to

sequential implementation [3].

III. LEUKOCYTE TRACKING

This application demonstrates an urgent need for dramatic

speedups. It is a useful case study as it illustrates many of the

issues that other applications will face in trying to use many

core systems. It is an application presenting nontrivial software

engineering challenges as well as presenting a workload that is

representative of a much broader class of applications. The

detection and tracking algorithm originally implemented in

MATLAB, and re-implemented in C resulted in a significant

performance improvement. Researchers, further, improved the

performance by accelerating the most computationally

demanding stages using CUDA and, for comparison, OpenMP

[4]. The speedups in performance clearly demonstrate the

advantages of the throughput-oriented nature of GPUs. There

are number of bottlenecks, in both hardware and software,

whose elimination will enable significant speedups and

simplify the development of efficient CUDA applications.

IV. REMOTE SENSING

New Earth Observation instruments that are expected to

substantially increase their spatial and spectral resolutions, thus

producing a nearly continual stream of computationally intense

image processing data sets. There have been tremendous

advances not only expected in optical instruments, but also in

remote sensing systems. Image processing in remote sensing is

particularly time consuming, and can greatly benefit from high

performance computing techniques and practices to speed up

processing of this type of data. If multiple types of remote

sensing data is available, computing resources have to be used

to address problems for efficient data sharing and distribution,

compression, processing, transmission and storage. The role of

different types of HPC architectures depends heavily on the

considered remote sensing application, cluster-based parallel

computing seems appropriate for efficient information

extraction from very large data archives comprising data sets

already transmitted to Earth, whereas the time-critical

constraints introduced by many remote sensing applications

call for on-board and often real-time processing developments,

only focused on data processing and compression. This

includes specialized hardware architectures such as Field

Programmable Gate Arrays (FPGAs) and GPUs [5].

V. WEATHER FORECASTING

Timely weather predictions are particularly useful for

severe weather events when life and property is at risk. To get

weather predictions in time using latest advances in

atmospheric sciences is a big challenge even on the fastest

super computers. The most powerful supercomputers in the

world are used for numerical weather forecasting. With the

help of GPU, inherently parallel problems in weather

forecasting can be solved effectively. GPUs have hundreds of

parallel cores for execution of tens of thousands of parallel

threads. Unlike traditional CPUs, GPUs are not optimized for a

single thread performance. Instead, they are optimized for

executing a large number of threads, simultaneously.

Therefore, a single thread performance on a GPU is lower than

that on a contemporary CPU. This difference is because the

processor architectures require legacy software to be rewritten

for efficient parallel execution on GPUs. GPUs have been used

very successfully for numerous different computational

problems. [6].

VI. K-MEAN COMPUTATION

K-means algorithm is one of the famous unsupervised

clustering algorithms. Nowadays, desktop computers are

coming equipped with programmable GPUs with plenty

powerful Single Instruction Multiple Data (SIMD) processors

that can support parallel data processing and high-precision

computation. With the rapid advance in GPUs performance,

coupled with recent improvements in their programmability,

made it possible to parallelize K-means with personal

computers. In this algorithm, both data objects assignment and

k centroids recalculation of traditional k-means are parallel

performed on the GPU [7].

VII. BAYESIAN COMPUTATION

The package cudaBayesreg is used to implement a Bayesian

multilevel model for the analysis of brain functional magnetic

resonance imaging (fMRI) data in the CUDA environment.

The statistical framework in cudaBayesreg is built around a

Gibbs sampler for multilevel/hierarchical linear models with a

normal prior. Multilevel modeling can be treated as a

generalization of regression methods in which regression

coefficients are themselves given a model with parameters

estimated from data [8]. As in Statistical Parametric Map

(SPM), the Bayesian model fits a linear regression model at

each voxel, however uses multivariate statistics for parameter

estimation at each iteration of the Markov Chain Monte Carlo

(MCMC) simulation. The Bayesian model used in

cudaBayesreg follows a two–stage Bayes prior approach to

relate voxel regression equations through correlations between

the regression coefficient vectors [9]. This model closely

follows the Bayesian multilevel model proposed by Rossi,

Allenby and McCulloch [10], and implemented in bayesm

[11]. This approach overcomes several limitations of the

classical SPM methodology. The SPM methodology

traditionally used in fMRI has several important limitations

mainly because it relies on classical hypothesis tests and p–

values to make statistical inferences in neuroimaging [12],

[13], [14]. However, as is often the case with MCMC

simulations, the implementation of this Bayesian model in a

sequential computer entails significant time complexity. The

CUDA implementation of the Bayesian model has been able

to reduce significantly the runtime processing of the MCMC

simulations. The increased performance comes from the use of

separate threads for fitting the linear regression model at each

voxel in parallel.

VIII. MOLECULAR DYNAMICS SIMULATION

Molecular Dynamics is a computationally intensive

method for studying the natural time-evolution of a system of

atoms using Newton’s classical equations of motion. MD has

always been limited more by the current available computing

power. Researchers in this field have typically focused their

efforts to simplify models and identify what can be neglected

to still obtain acceptable results [15]. HPC on GPU is the key

in making biologically relevant calculations tractable without

compromise.

IX. CONTINUOUS SPACE LANGUAGE MODEL

The Continuous Space Language Model (CSLM),

introduced by Schwenk along with an open source

implementation, provides an alternative to the n-gram back off

model and allows “true interpolation” of the probabilities of

unseen n-grams. The CSLM algorithm is highly

computationally intensive and is a good candidate for

implementation with CUDA. The multiplications in the hidden

and output layer, both forward and backward pass, especially

in bunch mode using large matrices, are highly parallel.

However, there is overhead associated with using the GPU.

Memory should be allocated on both the CPU as well as on the

GPU. Variables used in the computation must be transferred to

the GPU. The computation is then performed on the GPU, and

the results must be transferred back to the host CPU.

CUBLAS is a CUDA implementation of BLAS (Basic Linear

Algebra Subprogram), which performs matrix multiplication

operations. It is self-contained and requires no direct

interaction with the CUDA driver. Functions in the CUBLAS

library provide matrix multiplications in an efficient manner

and handle all overhead issues regarding programming of

threads. Due to their simplicity of use, the CUBLAS libraries

were used as the starting point for the introduction of CUDA

to CSLM [16].

X. VEHICLE ROUTING

Many of identical vehicles with a given capacity are

located at a central depot. They need to service a set of

customer orders. Each customer orders from a specific

location and has specific size. Travel costs between different

locations are available. The goal is to design a least-cost set of

routes for all the vehicles so that all customers are visited once

and vehicle capacities are adhered to. The effort is neither to

propose a new, competitive Vehicle Routing Problem solution

method, nor to prove once more that the GPU has high

computing power. Rather, our main goal is to carefully asses

how well local search implementation can fit the given

hardware, identify limiting factors and to resolve them [17].

XI. SWARM BASED ALGORITHMS

Artificial Intelligence (AI) is one of the most dominating

paradigms of modern research and inculcates computationally

intensive algorithms. GPU is being investigated to increase

performance of these AI algorithms and brief survey is given

below:

A. Ant Colony Optimization

ACO parallel implementations can be divided into two

general approaches. The first one is the parallel execution of

the ants construction phase in a single colony. It aims to

accelerate computations by distributing ants to computing

elements[18]. The second that was introduced by Stützle is the

execution of multiple ant colonies. In this case, entire ant

colonies are allocated to processors in order to speed up

computations as well as to potentially improve solution quality

by incorporating cooperation schemes between colonies.

These usually follow the message-passing and shared-memory

computing paradigms. The ACO metaheuristic, the Max–Min

Ant System (MMAS) algorithm and its application to the

Traveling Salesman Problem (TSP). The selection of MMAS

and TSP is to focus on algorithmic aspects of ACO and

technical aspects of GPU computing that are not problem

dependent and to compare with the work of Stützle and Hoos

[19].

B. Particle Swarm Optimization

Advanced Driving Assistance Systems (ADAS) needs road

sign detection. The published work shows that traffic signs can

be first detected and then classified in video sequences in real

time[]. While detection is performed using computer vision

techniques based on color and/or shape matching. A novel

approach based on both sign shape and color which uses

Particle Swarm Optimization (PSO) for detection can be used.

A single fitness function may be used both to detect a sign

belonging to a certain category and, in parallel, to estimate its

actual position with respect to the camera reference frame. To

speed up execution time, the algorithm exploits the parallelism

available with GPUs these days [20].

C. Genetic Algorithms

Genetic Algorithms (GA) is candidate for parallel

computing since population members fitness can be evaluated

in parallel. GA uses a number of other operations which, if

performed in parallel, can lead to faster evolutionary

performance. The binary and real-coded genetic algorithms

using CUDA may be executed in parallel. The bottlenecks in a

parallel GA implementation can be identified and modified

suitably. The results are compared with the sequential

algorithm for accuracy and clock time for varying problems by

studying the different parameters population sizes, number of

threads, problem sizes. Significant speed-ups results over the

sequential GA [21].

XII. CONCLUSIONS

All applications, discussed, in the paper, resulted in

tremendous speedup in performance. Leukocyte Tracking

implementation achieved an overall speedup of 199.9x using a

desktop system with an NVIDIA GeForce GTX 280 GPU, as

compared to a speedup of 7.6x on the fastest available

multicore CPU system. The new Molecular Dynamics

algorithm using CUDA leads to a performance improvement.

Weather forecasting resulted in a reduction in processing time

from 16928 ms on CPU to 43.5 ms on a Graphics Processing

Unit (GPU). In Remote Sensing performance gains can attain

10 to 400 times. The ACO shows speedups of up to 23.60 with

solution quality similar to the original sequential

implementation.

REFERENCES

[1] Gingold, Robert A., and Joseph J. Monaghan. "Smoothed Particle

Hydrodynamics-Theory and Application to Non-Spherical

Stars." Monthly notices of the royal astronomical society 181

 (1977):375-389.

[2] Nuli, Uday A. and Kulkarni, P. J., “SPH Based Fluid Animation

Using Cuda Enabled GPU,” International Journal of Computer

Graphics & Animation,vol.2, No.4pp.47–53,October 2012.

[3] Amador, Gonçalo, and Abel Gomes. "A CUDA-Based

Implementation of Stable Fluids in 3D with Internal and Moving

Boundaries." In Computational Science and Its Applications

(ICCSA), 2010 International Conference on, pp. 118-128. IEEE,

2010.

[4] Boyer, Michael, David Tarjan, Scott T. Acton, and Kevin

Skadron. "Accelerating Leukocyte Tracking Using CUDA: A

Case Study in Leveraging Manycore Coprocessors." In Parallel

& Distributed Processing, 2009. IPDPS 2009. IEEE

International Symposium on, pp. 1-12. IEEE, 2009.

[5] Plaza, A., Q. Du, Y-L. Chang, and R. L. King. "Foreword to the

special issue on High Performance Computing in Earth

Observation and Remote Sensing." Selected Topics in Applied

Earth Observations and Remote Sensing, IEEE Journal of 4, no.

3 (2011): 503-507.

[6] Mielikainen, Jarno, Bormin Huang, H. A. Huang, and Mitchell

D. Goldberg. "Improved GPU/CUDA Based Parallel Weather

and Research Forecast (WRF) Single Moment 5-Class (WSM5)

Cloud Microphysics." Selected Topics in Applied Earth

Observations and Remote Sensing, IEEE Journal of 5, no. 4

(2012): 1256-1265.

[7] Hong-Tao, Bai, He Li-li, Ouyang Dan-tong, Li Zhan-shan, and

Li He. "K-Means on Commodity GPUs with CUDA." In

Computer Science and Information Engineering, 2009 WRI

World Congress on, vol. 3, pp. 651-655. IEEE, 2009.

[8] Gelman, Andrew. "Multilevel (hierarchical) Modeling: what it

can and cannot do." Technometrics 48, no. 3 (2006): 432-435.

[9] Da Silva, AR Ferreira. "cudaBayesreg: Bayesian Computation in

CUDA." The R Journal 2, no. 2 (2010): 48-55.

[10] Rossi, Peter E., and Greg M. Allenby. "Bayesian Statistics and

Marketing."Marketing Science 22, no. 3 (2003): 304-328.

[11] Rossi, Peter, and Rob McCulloch. "Bayesm: Bayesian Inference

for Marketing/Micro-Econometrics." R package version (2010):

2-2.

[12] Friston, Karl J., W. Penny, Christophe Phillips, S. Kiebel, G.

Hinton, and John Ashburner. "Classical and Bayesian Inference

in Neuroimaging: theory." NeuroImage 16, no. 2 (2002): 465-

483.

[13] Berger, James O., and Thomas Sellke. "Testing a Point Null

Hypothesis: the Irreconcilability of P Values and Evidence."

Journal of the American Statistical Association 82, no. 397

(1987): 112-122.

[14] Vul, Edward, Christine Harris, Piotr Winkielman, and Harold

Pashler. "Puzzlingly High Correlations in fMRI Studies of

 Emotion, Personality, and Social Cognition." Perspectives on

Psychological Science 4, no. 3 (2009): 274-290.

[15] Liu, Weiguo, Bertil Schmidt, Gerrit Voss, and Wolfgang

Müller-Wittig. "Accelerating Molecular Dynamics Simulations

using Graphics Processing Units with CUDA." Computer

Physics Communications 179, no. 9 (2008): 634-641.

[16] Thompson, Elizabeth A., and Timothy Anderson. "Use of

CUDA for the Continuous Space Language Model." In High

Performance Extreme Computing (HPEC), 2012 IEEE

Conference on, pp. 1-5. IEEE, 2012.

[17] Schulz, Christian. "Efficient local search on the GPU—

Investigations on the Vehicle Routing Problem." Journal of

Parallel and Distributed Computing (2012).

[18] Bullnheimer, Bernd, Gabriele Kotsis, and Christine Strauß.

"Parallelization Strategies for the Ant System." (1997).

[19] Delévacq, Audrey, Pierre Delisle, Marc Gravel, and Michaël

Krajecki. "Parallel Ant Colony Optimization on Graphics

Processing Units." Journal of Parallel and Distributed

Computing (2012).

[20] Mussi, Luca, Stefano Cagnoni, and Fabio Daolio. "GPU-based

Road Sign Detection using Particle Swarm Optimization." In

ntelligent Systems Design and Applications, 2009. ISDA'09.

Ninth International Conference on, pp. 152-157. IEEE, 2009.

[21] Arora, Ramnik, Rupesh Tulshyan, and Kalyanmoy Deb.

"Parallelization of Binary and Real-Coded Genetic Algorithms

on GPU using CUDA." In Evolutionary Computation (CEC),

2010 IEEE Congress on, pp. 1-8. IEEE, 2010.

