
A Comprehensive Survey on Various

Evolutionary Algorithms on GPU

Satvir Singh1, Jaspreet Kaur2 and Rashmi Sharan Sinha3

1,2,Department of Electronics & Comm. Engineering,
SBS State Technical Campus, Moga Road Ferozepur–152004, Punjab

E-mail: 1drsatvir.in@gmail.com, 2er.jaspreetkaur1@hotmail.com,
3sinharashmisinha@hotmail.com

Abstract—This paper presents a comprehensive

survey on parallelizing computations involved in

optimization problem on Graphics Processing Unit (GPU)

using CUDA (Compute Unified Design Architecture).

GPU have multithread cores with high memory

bandwidth which allow for greater ease of use and also

more radially support a layer body of applications. Many

researchers have reported significant speedups with

General Purpose computing on GPU (GPGPU). Stochastic

meta-heuristic search algorithms, e.g., Mixed Integer Non-

Linear Programming (MINLP), Central Force

Optimization(CFO), Genetic Algorithms (GA), and

Particle Swarm Optimization(PSO), etc. are being

investigated nowadays for improved performance with

processing power of GPU. From study it is found that

GPGPU shows tremendous speedups from 7 times in

Steady State GAs to 10, 000 times speedups in CFO.

Keywords: GPU, GPGPU, CUDA, MINLP, PGMOEA,

CGA, CFO, Optimization Algorithms

I. INTRODUCTION

General Purpose GPU Computing really took off

when CUDA and Stream arrived in late 2006 [1]. GPU

constitutea tremendous step towards a usable, suitable,

scalable and manageable future-proof programming

model [2]. Optimization works are significantly

parallel, and so GPUs evolved as large-scale general

purpose computation machines [3] [4] [5] [6]. With the

advent and large availability of General Purpose

Graphics Processing Units and the development and

straightforward applicability of the Compute Unified

Device Architecture platform, several applications are

being benefited by the reduction of the computing time

[7]. GPGPU-based architecture, aiming at improving

the performance of computationally demanding

optimizations for identifiable specific mapping

parameters, one can reduce total execution time

drastically and also, improve greatly the optimization

process convergence. Application performance can be

significantly improved by applying memory access

pattern-aware optimizations that can exploit knowledge

of the characteristics of each access pattern [3]. To

evaluate the effectiveness of our methodology, we have

created a tool that incorporates our proposed

algorithmic optimizations and report on execution

speedup using selected benchmark kernels that cover a

wide range of memory access patterns commonly found

in GPGPU workloads [8]. Graphics Processing Units

(GPUs) are widely used among developers and

researchers as accelerators for applications outside the

domain of traditional computer graphics. In particular,

GPUs have become a viable parallel accelerator for

scientific computing with low investment in the

necessary hardware.

In this paper, various sections describe different

Evolutionary Algorithms (EAs) and their gained

efficient speedup on GPU using CUDA. Sections II to

V are dedicated to various GAs variants those have

been investigated by various researchers. Sections VI to

X presents Cellular automata, CFP, Multi-objective

Optimization, PSO Differential Evolution (DE).Finally

Section XI and XII present study on GAs Versus DE

and conclusions at the end.

II. ISLAND BASED GENETIC ALGORITHM

Island based genetic algorithm (GA) is implemented

on Multi-GPU in [27], for solving the Knapsack problem.

The main motiveis to speed up the GA by using a cluster

of NVIDIA GPU and comparing the execution time of

single GPU with a multicore CPU.

The population of proposed GA is organized in two

one-dimensional arrays. First array representing the

genotype and the other array represents the fitness

value. The GA parameter such as population and

chromosome size, the crossover and mutation rates, the

statistic collection and migration interval, the total

number of evaluated generations etc. are filled with

command line parameters, this maintained structure is

stored at GPU constant memory [28]. The basic concept

to maximize GPU utilization is to control thread

divergence and amalgamate all memory accesses using

this algorithm [28]. Firstly, a hash function generator

based stateless random number is generated [29][30].

Then, the genetic material is exchanged of two parents

using crossover and mutation process by performing the

binary tournament selection to create a new individual.

As the new offspring is created fitness evaluation is

carried out. Next, the parent is replaced by the offspring

with the help of entire warp if the fitness value of latter

is higher than the former. The good individuals are

migrated from the adjacent lower index island to the

higher index island which is arranged in the

unidirectional ring topology. Lastly, all the statistical

data from the local island and from the global gathering

process are collected [31].

The analysis illustrates that as the individual per

GPU and number of islands increases the fitness value

increases. Secondly, the execution time is invariant for

International Conference on Communication, Computing & Systems (ICCCS–2014)

84

island size up to 512 and then elevate linearly beyond

512. All in all, the implemented Island based GA leads

to the GPU performance of 5.67 TFLOPS.

III. ADVANCED GENETIC ALGORITHM

With the increasing advent of GPGPU using

CUDA, the stochastic algorithm of advanced Genetic

Algorithm is used to solve non-convex MINLP and

non-convex Non-linear Programming (NLP) problems

[9]. MINLP refers to mathematical programming

algorithms that can optimize both continuous and

integer variables, in a context of nonlinearities in the

objective function and/or constraints. MINLP problems

involve the simultaneous optimization of discrete and

continuous variables. These problems often arise where

one is trying to simultaneously optimize the system

structure and parameters. This is difficult because

optimal topology is dependent upon parameter levels

and vice versa [9].

In many design optimization problems, the

structural topology influences the optimal parameter

settings so a simple de-coupling approach does not

work: it is often not possible to isolate these and

optimize each separately. Finally, the complexity of

these problems depends upon the form of the objective

function. In the past, solution techniques typically

depended upon objective functions that were single-

attribute and linear (i.e., minimize cost). However, real

problems often require multi-attribute objectives such

as minimizing costs while maximizing safety and/or

reliability, ensuring feasibility, and meeting scheduled

deadlines. In these cases, the goal is to optimize over a

set of performance indices which may be combined in a

nonlinear objective function. For efficient utilization of

GPU parallel resources adaptive resolution genetic

algorithm (arGA) is developed [9].Through this

algorithm the intensity of each individual is beamed

using entropy measures. The algorithm is tested for

different benchmarking problems [9] having different

levels of difficulty. Parallelization of arGA and the

arLS (local search) operators is done to gaina

significant speedup. The results of the tests shows a

speedup of 42x with single precision and 20x with

double precision overnVidia Fermi C2050 GPU [9].

IV. STEADY STATE GENETIC ALGORITHM

Steady-State GA is implemented on GPU using

CUDA in [23], where population individual data is

accessed parallel to effectively speedup the process.

The optimization problem is effectively solved by the

means of Evolutionary Computing [24]. The steady

state Genetic Algorithm is used to access optimization

algorithms. These algorithms basically have selection

for the reproduction and selection of survival

implementation with concurrent kernel execution [22].

The implementation of Steady-State GA is done as

follows: Firstly, from the population two individual

(parents) are received by Streaming Multiprocessors

(SM). Then, the kernel generates random number as

GAs are stochastic search processes. BLX- is adopted

as blend crossover in the crossover process. The

crossover operation is executed with two parents in SM,

and the two offspring yielded are stored in the shared

memory. Next, uniform mutation, fitness based sorting

process and selection process is executed. This whole

process is repeated until the loop terminates. Four test

functions of the optimization problem Hyper sphere,

Rosen rock, Ackley, and Griewank were used for

comparing GPU and CPU computation on

implementing Steady-State GA. The study is first

performed upon CPU then with nVidia GeForce

GTX480GPU gives a speedup of 3x to 6x then the

previous implementation on CPU [19]. Moreover, the

speed up ratio for Generational GA is much better than

Steady-State GA on GPU since computational

granularity is very small in the latter. So a large amount

of execution time is occupied by the latency caused by

the kernel calls. However, in terms of function values

Steady-State GA are more efficient.

V. CELLULAR GENETIC ALGORITHM

Genetic Algorithm have a subclass known as

Cellular Genetic Algorithm (cGA) which provides the

data of population structured in several specified

topologies [19]. Cellular Genetic Algorithm (cGA) is

implemented for multi-GPU to accelerate the execution

process so that the system could be more efficient.

cGAis used because of its high performance and swarm

intelligence structure. Until the global optimum region

is reached, cGA is able of keeping a high diversity in

population.

To manage the multi-GPU utilization each CPU

thread is held responsible for one GPU device which is

known as multi-threaded mode. Firstly, each CPU

thread is associated to one GPU. This can be done if

common structure (toroidal grid) is designed for all

CPU threads. Then, the population is divided into

subpopulations which is stored in the global memory of

each GPU. Each GPU works individually irrespective

of other GPU and the process is same as performed with

single GPU implementation. To ensure that every GPU

had finished its work a synchronization barrier is used

and lastly, data is collected and transferred to other

GPUs. The process executes until the while loop in

pseudo code of cGA terminates.

Three discrete optimization problems: Colville

Minimization, Error Correcting Codes Design Problem

(ECC) and Massively Multimodal Deceptive Problem

(MMDP), and three continuous ones, Shifted Griewank

function, Shifted Restringing function and Shifted Rosen

rock function [20] [21] were selected for comparing the

algorithm in terms of efficiency and efficacy. Statistical

tests [19] are performed for each problem to ensure that

the results are statistically significant. A common

A Comprehensive Survey on Various Evolutionary Algorithms on GPU

85

parameter, population size is used to make a meaningful

comparison among all the algorithms.

The analysis shows the average speed up with

respect to CPU version ranges from 8 to 771 and for

single GPU it is alike multi-GPU, with a little overhead

in the latter case. The multi-GPUis more prominent in

paralleling the algorithm and producing accurate results

as there is a need of special maintenance to perform

same experiment upon single GPU.

Genetic Algorithm is tested and evaluated on

parallel implementation on C-CUDA API on the

parameters like population size, number of threads,

problem size and problem of differing complexities

with variation in the population individuals [19]. For an

efficient implementation on GPGPU the solution is

thoroughly implemented along with the operators like

random number generation, initialization, selection

operation, and mutation operations [13]. The nVidia

GeForce 8800GTX shows overall speedup of 40–400

on three different test problems [22]. Thus parallel

implementation is more effective then sequential

process as compared with clock time and accuracy.

VI. CELLULAR AUTOMATA

Cellular Automata have various real life

applications like physical system modeling, road traffic

simulation, artificial life simulation, etc. [14] [15] [16].

Cellular automata design evolved from evolutionary

algorithm and a part of Genetic Algorithm which is

complex in nature.

The Algorithm is parallelized and implemented

upon GPGPU shows an efficient reduction in execution

time. The rules of Cellular Automata take longer time

period in evolution in sequential execution. The same

Genetic Algorithm shows 31.34x to 314.94x speedup

when executed upon nVidia GeForce FX280 GPU

which is a significant reduction in execution time [17].

VII. CENTRAL FORCE OPTIMIZATION

The metaheurestic algorithm CFO is implemented

upon GPGPU using local neighborhood and

implemented CFO concepts [25]. The calculation of

CFO independent upon the movement of probes which

are scattered allover the space. The probes then slowly

move towards the probehaving highest mass or fitness.

PR-CFO is the most evaluated algorithm with the

measures of initial position and acceleration vectors,

fitness evaluation and probe movements [26]. The test

problems are having the dimension of 30 to 100 of four

different examples of Pseudo random CFO (PR-CFO).

The PR-CFO is tested with four test types i.e. Ring,

Standard, CUDA, CUDARing. PR-CFO shows a

speedup of 4 to 400 using CUDA. PRCFOring and PR-

CFO CUDA ring on nVidia Tesla C1060 shows10, 000

times faster results as compared with standard PR-

CFOalgorithm [26].

VIII. PGMOEA

The general Purpose GPU is efficiently used in

optimizing the multiple objective problems. The

particle gradient Multi-objective Evolutionary

Algorithm (PGMOEA) is used to solve optimization

problems. PGMOEA is first experimented on CPU and

then after parallelizing the algorithm executed upon

GPU which formed agreat speedup results [18]. The

first step to implement PGMOEA is to read parameters

such as population size, dimension size, maximum

iterative generations, crossover rate, mutation rate and

initialize particle texture array. Blank texture array i.e

objective, rank value, entropy and free energy array are

then generated to store different results. Next, the

particle texture array is is loaded to GPU to calculate

the rank of all the particles and the results are then

stored in rank value texture array. The particles are

sorted in the decreasing order of their ranks to make a

mating pool. The higher order rank value particles are

selected to perform crossover and mutation operation

using Guo’s algorithm. The new particles generated

through this process are then replaced with the last

particles which have lower rank in mating pool to get a

new population. The program is terminated if the halt

condition is satisfied else particle texture array is again

loaded to GPU and the process is repeated again.

TABLE I SPEEDUP COMPARISON (SOURCE [18])

PGMOE

Algorithm

Example 1 Example 2

Time (s) Speedup Time (s) Speedup

On GPU 0.97 9.95 0.83 10.64

On CPU 9.01 1.04 8.02 1.10

The experiment is conducted upon two different

examples. The first example shows a speedup of 9x

with nVidia GeForceGTX285 then CPU result, while

the second example is 10x faster than that of CPU [18].

The speedup comparison is shown bellowing Table I.

IX. PSO ALGORITHM

PSO is a met heuristic algorithm works by having a

swarm of particles [10]. These particles are moved

around in the search-space according to a few simple

formulae. The movements of the particles are guided by

their own best known position in the search-space as

well as the entire swarm best known position [11].

When improved positions are being discovered

these will then come to guide the movements of the

swarm. PSO is one of the types of Evolutionary

Algorithm used to optimize the multiple objective

problems. When an optimization problem involves

more than one objective function, the task of finding

one or more optimal solutions is known asmulti-

objective optimization [10].

For implementing PSO code in C-CUDA the

allocation of vector/matrix is done on the device.

International Conference on Communication, Computing & Systems (ICCCS–2014)

86

Random numbers are generated using Mersenn Twister

code and then based on objective functions are

evaluated. After evaluation the global best particle of

whole swarm is updated. Next, the sum and

multiplication operations are performed on the vectors

which describe the particle. The benchmark functions

with many local minima mentioned in table A1

appendix [12] are selected. The algorithm is tested upon

three different platforms of C, Matlab and C-CUDA.

The parallel implementation of PSO on nVidia GTX

280 gives 17 to 41 times speedup in computing time in

C-CUDA as compared with the Cand Matlab as Shown

in Fig. 1 [12]. Fig. 1 Computing Time for C-CUDA, C, and MATLAB

 (Source [12])

TABLE II RUNNING TIME RESULTS USING C-CUDA AND C FOR THE BENCHMARK OPTIMIZATION PROBLEMS WITH 100 DIMENSIONS,

100 INDIVIDUALS, 10, 000 AND 100, 000 ITERATIONS (SOURCE [13])

Benchmark Functions Implementation

Language

10, 000 Iterations 100, 000 Iterations

Computing

Time(s)

Standard

Deviation

Speedup Computing

Time(s)

Standard

Deviation

Speedup

Schwefel-F1(x) C-CUDA 0.64 0.01 NA 27.72 0.45 NA

C 9.59 0.21 15.05 983.65 30.91 35.48

Rastrigin-F2(x) C-CUDA 0.64 0.01 NA 27.47 0.38 NA

C 8.39 0.27 13.15 900.97 29.50 32.80

Ackley-F3(x) C-CUDA 0.72 0.01 NA 36.33 1.38 NA

C 7.10 0.25 9.91 736.68 39.56 20.28

Griewank- F4(x) C-CUDA 0.69 0.01 NA 31.44 0.37 NA

C 10.39 0.44 14.96 1005.35 4.33 31.98

Generalized penalized

function-F5(x)

C-CUDA 0.76 0.02 NA 37.88 1.16 NA

C 13.75 1.13 18.07 1344.59 72.33 35.50

Generalized penalized

function-F6(x)

C-CUDA 0.72 0.01 NA 37.44 1.50 NA

C 13.76 1.36 19.04 1300.11 81.40 34.73

TABLE III COMPARISON TABLE OF DIFFERENT EVOLUTIONARY ALGORITHMS ON GPU AND CPU

Algorithm Experimental Set up Time Speed up

GPU (nVidia) CPU GPU CPU GPU CPU

Island based GA GTX580 Intel Xeon

Six-Core

5.67 TFLOPS – 653.68 11.32

Advanced GA C2050 (Double precision) Intel Core 2 Duo – – 20x

C2050 (Single precision) Intel Corei7 40x

Steady-state GA Geforce GTX480 Intel Core i7 4.874 - 4.780s 14.46-28.56s 3.0x-6.0x

Cellular GA GTX-285 Intel Quad

processor

0.021 - 1.821s 0.266 - 1450.415s 8 - 771 –

Binary and Real

coded GA

Tesla C1060 AMD Athlon 64

X2 Dual Core

RGA

0.003365s -

22.534169s

RGA

0.071639 - 4851.69

 RGA

21.289 -

215.304

Cellular

Automata

Laptop GeForce 8600M GS Intel Core 2 Duo

Processor

– – 31.34x

Work-

station

GeForce FX 280 Intel Core 2 Duo

Processor

– – 314.97x

PGMEOA GeForce GTX285 Intel Core (TM)2

Q8200

0.83s - 0.97s 8.02s - 9.01s 9.95 - 10.64 1.04 -

1.10

CFO Tesla C1060 Intel Xeon 5504

Quad Core

– – 10, 000x

Table III (Contd.)…

0

20

40

60

80

100

120

f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)

C
o

m
p

u
ta

ti
o

n

T
im

e
(s

)

Optimization Problem

C-CUDA
C
MATLAB

A Comprehensive Survey on Various Evolutionary Algorithms on GPU

87

…Table III (Comparison Table of Different Evolutionary Algorithms on GPU and CPU)

Algorithm Experimental Set up Time Speed up

GPU (nVidia) CPU GPU CPU GPU CPU

PSO GTX 280 AMD Athlon x2

3800 + 2.0 GHz
Dual Core

– – 17 to 41x

DE GTX285 AMD Athlon x2

5200 + 2.7 GHz
Dual Core

F1(x)
5.84

F6(x)7.2
5

F1(x)481.
38

F6(x)682.
76

20x to 35x

Many threaded DE
and GA

Tesla C2050 Dual Core AMD
Opteron

– – DE

19 - 34 x

X. DIFFERENTIAL EVOLUTIONARY ALGORITHM

GPGPU is proved to be great architectural unit in
reducing the processing time [13]. The Differential
Algorithm which is one of the parts of EAs is
implemented upon CPU using C-CUDA. The
motivating features of Differential Algorithm are easy
for parallelization and convergence properties which
intern gives an appropriate result. The algorithm is first
tested upon CPU then on nVidia GTX285 with 1GB
GDDR3 GPU with the speedup outcomes.

The implementations of DE algorithm and
benchmark functions are same as used for PSO
implementation on GPU. GPU gives 20x to 35x faster
results which proves GPU is much more effective and
efficient than Differential Algorithm on CPU [13]. The
Speedup comparison results are shown in Table II.

XI. DE VERSUS GAS

In this paper [32], two evolutionary meta-heuristic

algorithms DE and GAs, many threaded implementation

is done on CUDA and results were compared when

Independent task scheduling is solved. Mapping of set of

task to a set of resources is known as Independent task

scheduling [33] [34]. Since it is a NP-complete problem

so two objectives make span and flow time are used

during task mapping for optimization.
Whole meta task can be accelerated by minimizing

make span and the efficient utilization of the computing
environment can be done by minimizing flow time.

 (1)

 (2)

Real coordinates are used in DE [35]for encoding
real vectors. Truncation of real encoded vector
coordinates is done to translateit into schedule
representation. For this fitness function f(S):Sched R
is defined which evaluates each schedule

 (3)

For minimization purpose a standard proposed in
[34] is used. The simulation matrix is derived from ETC
matrix. The time taken by the machine to execute a task
can be estimated using Expected Time to Compute
(ETC) matrix. The average final fitness value is
calculated by both the algorithms for each ETCmatrix.

The analysis shows that the DE is better than GA for
solving Independent task scheduling problem and leads
to better results for many threaded implementation on
CUDA.

XII. CONCLUSION

In this paper we present different optimization

algorithm with tremendous speedups in the computation

time. The overall GPU performance of multi-GPU

Island-based GA for solving Knapsack problem reaches

5.67 TFLOPS. MINLP archived an overall speedup of

20x to 42x using nVidia Tesla C2050 GPU as compared

to Intel Core i7 920 CPU processor. On implementing

Steady state GA on a GPU approximately 6 times faster

results are obtained than the corresponding CPU

implementation. The implementation of Cellular

Genetic Algorithm for a multi-GPU platform leads to

speedup range from 8 to 771 with respect to the CPU

version. The new binary-coded and real-coded Genetic

Algorithm using CUDA leads to a performance

improvement with the speedup of 40x to 400x. Central

Force Optimization (CFO)results in reduction of

computing time and a speedup of 10, 000x. The

computing time gets accelerated up to 17 to 41 times in

C-CUD Aafter PSO is paralleled implemented on

NVIDIA GTX280. GPU is much more effective and

efficient for Differential Evolutionary algorithm since it

gives 20x to 35x faster results than CPU. The Cellular

Automata shows 314.97x as compared with the

sequential implements. The advantage of GPU

computing is that it is fast and cheap. A theoretical 1.5

TFLOPS is obtained by the newest nVIDIA GTX 580

at $500. The major drawback is not all algorithms can

have theoretical speedup and are hard to program.

REFERENCES

[1] K. S. Perumalla, “Discrete-event Execution Alternatives on
General Purpose Graphical Processing Units (GPGPU), ” in
Proceedings of the 20th Workshop on Principles of Advanced

and Distributed Simulation, 2006, pp. 74–81.
[2] J. A. Jablin, P. McCormick, and M. Herlihy, “Scout: high-

performanceheterogeneous computing made simple, ” in IEEE

International Symposium on Parallel and Distributed

Processing Workshops and Phd Forum (IPDPSW), 2011, 2011,
pp. 2093–2096.

International Conference on Communication, Computing & Systems (ICCCS–2014)

88

[3] Bustamam, K. Burrage, and N. A. Hamilton, “Fast Parallel

Markov Clustering in Bioinformatics using Massively Parallel

Graphics Processing Unit Computing, ” in 2010 Ninth

International Workshop on Parallel and Distributed Methods in

Verification and Second International Workshop on High

Performance Computational Systems Biology, 2010,

pp. 116–125.

[4] C. Xue-bin et al., “Data Processing in Space Weather Physics

Models in the Meridian Project, ” in 2010 Ninth International

Symposium on Distributed Computing and Applications to

Business Engineering and Science (DCABES), 2010,

pp. 342–345.

[5] F. Pei-qin, D. Liang-Long, L. Xiao-Ting, and J. Chao-bo,

“Design and Implementation of Remote Parallel Computing

System based on Multi-Platform, ” in 2010 International

Conference on Internet Technology and Applications, 2010,

pp. 1–4.

[6] M. Al Hajj Hassan and M. Bamha, “An Efficient Parallel

Algorithm for Evaluating Join Queries on Heterogeneous

Distributed Systems, ” in 2009 International Conference on

High Performance Computing (HiPC), IEEE, 2009,

pp. 350–358.

[7] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston,

J. Owens, M. Segal, M. Papakipos, and I. Buck, “GPGPU:

GeneralPurpose Computation on Graphics Hardware, ” in

Proceedings of the 2006 ACM/IEEE conference on

Supercomputing, 2006, p.208.

[8] W. B. Langdon and M. Harman, “Evolving a CUDA Kernel

from an nVidiaTemplate, ” in 2010 IEEE Congress on

Evolutionary Computation (CEC), 2010, pp. 1–8.

[9] Munawar, M. Wahib, M. Munetomo, and K. Akama,

“Advanced Genetic Algorithm to Solve MINLPProblems over

GPU, ” in2011 IEEE Congress on Evolutionary Computation

(CEC), 2011, pp. 318–325.

[10] J. Kennedy, J. F. Kennedy, and R. C. Eberhart, Swarm

Intelligence. Morgan Kaufmann, 2001.

[11] J. Kennedy and R. Mendes, “Population Structure and Particle

Swarm Performance, ” Proceedings of the World on Congress

on Computational Intelligence, vol.2, pp. 1671–1676, 2002.

[12] L. de P Veronese and R. A. Krohling, “Swarm’s Flight:

Accelerating the Particles using c-CUDA, ” in IEEE Congress

onEvolutionary Computation, 2009, pp. 3264–3270.

[13] L. De Veronese and R. A. Krohling, “Differential Evolution

Algorithm on the GPU with c-CUDA, ” in 2010 IEEE Congress

onEvolutionary Computation (CEC), 2010, pp. 1–7.

[14] L. J. Durbeck and N. J. Macias, “The Cell Matrix: An

Architecture for Nanocomputing, ” Nanotechnology, vol. 12,

no. 3, p. 217, 2001.

[15] M. Gardner, “Mathematical Games: The Fantastic Combinations

of John ConwaysNew Solitaire Game Life, ” Scientific

American, vol. 223, no.4, pp. 120–123, 1970.

[16] M. Tomassini, M. Sipper, and M. Perrenoud, “On the

Generation of High-quality Random Numbers by Two-

dimensional Cellular Automata, ”IEEE Transactions

onComputers, vol. 49, no. 10, pp. 1146–1151, 2000.

[17] L. Zaloudek, L. Sekanina, and V. Simek, “GPU Accelerators for

Evolvable Cellular Automata, ” in 2009Computation

World:Future Computing, Service Computation, Cognitive,

Adaptive, Content, Patterns, 2009, pp. 533–537.

[18] X. Yue, Z. Wu, and K. Li, “Particle Gradient Multi-Objective

Evolutionary Algorithm based on GPU with CUDA, ” in 2010

International Symposium onInformation Science and

Engineering (ISISE), 2010, pp. 540–544.

[19] P. Vidal and E. Alba, “A Multi-GPU Implementation of a

CellularGenetic Algorithm, ” in 2010 IEEE Congress

onEvolutionary Computation (CEC), 2010, pp. 1–7.

[20] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A.

Auger, and S. Tiwari, “Problem Definitions and Evaluation

Criteria for the CEC 2005 Special Session on Real-Parameter

Optimization, ” KanGAL Report, vol. 2005005, 2005.

[21] K. Tang, X. Y´ao, P. N. Suganthan, C. MacNish, Y.-P. Chen,

C.-M. Chen, and Z. Yang, “Benchmark Functions for the CEC

2008 Special Session and Competition on Large Scale Global

Optimization, ” Nature Inspired Computation and Applications

Laboratory, USTC, China, 2007.

[22] R. Arora, R. Tulshyan, and K. Deb, “Parallelization of Binary

and Real-Coded Genetic Algorithms on GPU using CUDA, ” in

2010 IEEE Congress onEvolutionary Computation (CEC),

2010, pp. 1–8.

[23] M. Oiso, T. Yasuda, K. Ohkura, and Y. Matumura,

“Accelerating Steady-State Genetic Algorithms based on CUDA

Architecture, ” in 2011 IEEE Congress onEvolutionary

Computation (CEC), 2011, pp. 687–692.

[24] F. Stentiford, “An Evolutionary Programming Approach to the

Simulation of Visual Attention, ” in Proceedings of the 2001

Congress onEvolutionary Computation, vol. 2, 2001,

pp. 851– 858.

[25] Stefek, “Benchmarking of Heuristic Optimization Methods, ” in

14th International SymposiumMECHATRONIKA, 2011,

pp. 68–71.

[26] R. Green, L. Wang, M. Alam, and R. A. Formato, “Central

Force Optimization on a GPU: A Case Study in High

Performance Metaheuristics using Multiple Topologies, ” in

2011 IEEE Congress onEvolutionary Computation (CEC),

2011, pp. 550–557.

[27] J. Jaros, “Multi-GPUIsland-based Genetic Algorithm for

Solving the Knapsack Problem, ” in 2012 IEEE Congress

onEvolutionary Computation (CEC), 2012, pp. 1–8.

[28] C. NVIDIA, “CUDACBest Practices Guide ver. 4.0, ” 2011.

[29] C. Toolkit, “4.0 CURANDGuide. nVidiaCorporation, version

12.3, January 2011.”

[30] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw,

“Parallel Random Numbers: As Easy as 1, 2, 3, ” in2011

International Conference forHigh Performance Computing,

Networking, Storage and Analysis (SC), 2011, pp. 1–12.

[31] J. Sanders and E. Kandrot, CUDA by Example: An Introduction

to General-Purpose GPU Programming. Addison-Wesley

Professional, 2010.

[32] P. Kromer, J. Platos, V. Snasel, and A. Abraham, “A

Comparison of Many-Threaded Differential Evolution and

Genetic Algorithms on CUDA, ” in 2011 Third World Congress

onNature and Biologically Inspired Computing (NaBIC), 2011,

pp. 509–514.

[33] S. Ali, T. D. Braun, H. J. Siegel, and A. A. Maciejewski,

“HeterogeneousComputing, ” 2002.

[34] T. D. Braun, H. J. Siegel, N. Beck, L.L. B¨ol¨oni, M.

Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, B.

Yao, D. Hensgen et al., “A Comparison of Eleven Static

Heuristics for Mapping a Class of Independent Tasks onto

Heterogeneous Distributed Computing Systems, ” Journal of

Parallel and Distributed computing, vol. 61, no. 6, pp. 810–837,

2001.

[35] K. Price, R.M. Storn, and J.A. Lampinen, Differential

Evolution: A Practical Approach to Global Optimization.

Springer, 2006.

