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Abstract—This paper presents a comprehensive 

survey on parallelizing computations involved in 

optimization problem on Graphics Processing Unit (GPU) 

using CUDA (Compute Unified Design Architecture). 

GPU have multithread cores with high memory 

bandwidth which allow for greater ease of use and also 

more radially support a layer body of applications. Many 

researchers have reported significant speedups with 

General Purpose computing on GPU (GPGPU). Stochastic 

meta-heuristic search algorithms, e.g., Mixed Integer Non-

Linear Programming (MINLP), Central Force 

Optimization(CFO), Genetic Algorithms (GA), and 

Particle Swarm Optimization(PSO), etc. are being 

investigated nowadays for improved performance with 

processing power of GPU. From study it is found that 

GPGPU shows tremendous speedups from 7 times in 

Steady State GAs to 10, 000 times speedups in CFO.  

Keywords: GPU, GPGPU, CUDA, MINLP, PGMOEA, 

CGA, CFO, Optimization Algorithms 

I. INTRODUCTION

General Purpose GPU Computing really took off 

when CUDA and Stream arrived in late 2006 [1]. GPU 

constitutea tremendous step towards a usable, suitable, 

scalable and manageable future-proof programming 

model [2]. Optimization works are significantly 

parallel, and so GPUs evolved as large-scale general 

purpose computation machines [3] [4] [5] [6]. With the 

advent and large availability of General Purpose 

Graphics Processing Units and the development and 

straightforward applicability of the Compute Unified 

Device Architecture platform, several applications are 

being benefited by the reduction of the computing time 

[7]. GPGPU-based architecture, aiming at improving 

the performance of computationally demanding 

optimizations for identifiable specific mapping 

parameters, one can reduce total execution time 

drastically and also, improve greatly the optimization 

process convergence. Application performance can be 

significantly improved by applying memory access 

pattern-aware optimizations that can exploit knowledge 

of the characteristics of each access pattern [3]. To 

evaluate the effectiveness of our methodology, we have 

created a tool that incorporates our proposed 

algorithmic optimizations and report on execution 

speedup using selected benchmark kernels that cover a 

wide range of memory access patterns commonly found 

in GPGPU workloads [8]. Graphics Processing Units 

(GPUs) are widely used among developers and 

researchers as accelerators for applications outside the 

domain of traditional computer graphics. In particular, 

GPUs have become a viable parallel accelerator for 

scientific computing with low investment in the 

necessary hardware. 

In this paper, various sections describe different 

Evolutionary Algorithms (EAs) and their gained 

efficient speedup on GPU using CUDA. Sections II to 

V are dedicated to various GAs variants those have 

been investigated by various researchers. Sections VI to 

X presents Cellular automata, CFP, Multi-objective 

Optimization, PSO Differential Evolution (DE).Finally 

Section XI and XII present study on GAs Versus DE 

and conclusions at the end. 

II. ISLAND BASED GENETIC ALGORITHM

Island based genetic algorithm (GA) is implemented 

on Multi-GPU in [27], for solving the Knapsack problem. 

The main motiveis to speed up the GA by using a cluster 

of NVIDIA GPU and comparing the execution time of 

single GPU with a multicore CPU. 

The population of proposed GA is organized in two 

one-dimensional arrays. First array representing the 

genotype and the other array represents the fitness 

value. The GA parameter such as population and 

chromosome size, the crossover and mutation rates, the 

statistic collection and migration interval, the total 

number of evaluated generations etc. are filled with 

command line parameters, this maintained structure is 

stored at GPU constant memory [28]. The basic concept 

to maximize GPU utilization is to control thread 

divergence and amalgamate all memory accesses using 

this algorithm [28]. Firstly, a hash function generator 

based stateless random number is generated [29][30]. 

Then, the genetic material is exchanged of two parents 

using crossover and mutation process by performing the 

binary tournament selection to create a new individual. 

As the new offspring is created fitness evaluation is 

carried out. Next, the parent is replaced by the offspring 

with the help of entire warp if the fitness value of latter 

is higher than the former. The good individuals are 

migrated from the adjacent lower index island to the 

higher index island which is arranged in the 

unidirectional ring topology. Lastly, all the statistical 

data from the local island and from the global gathering 

process are collected [31]. 

The analysis illustrates that as the individual per 

GPU and number of islands increases the fitness value 

increases. Secondly, the execution time is invariant for 
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island size up to 512 and then elevate linearly beyond 

512. All in all, the implemented Island based GA leads 

to the GPU performance of 5.67 TFLOPS. 

III. ADVANCED GENETIC ALGORITHM

With the increasing advent of GPGPU using 

CUDA, the stochastic algorithm of advanced Genetic 

Algorithm is used to solve non-convex MINLP and 

non-convex Non-linear Programming (NLP) problems 

[9]. MINLP refers to mathematical programming 

algorithms that can optimize both continuous and 

integer variables, in a context of nonlinearities in the 

objective function and/or constraints. MINLP problems 

involve the simultaneous optimization of discrete and 

continuous variables. These problems often arise where 

one is trying to simultaneously optimize the system 

structure and parameters. This is difficult because 

optimal topology is dependent upon parameter levels 

and vice versa [9]. 

In many design optimization problems, the 

structural topology influences the optimal parameter 

settings so a simple de-coupling approach does not 

work: it is often not possible to isolate these and 

optimize each separately. Finally, the complexity of 

these problems depends upon the form of the objective 

function. In the past, solution techniques typically 

depended upon objective functions that were single-

attribute and linear (i.e., minimize cost). However, real 

problems often require multi-attribute objectives such 

as minimizing costs while maximizing safety and/or 

reliability, ensuring feasibility, and meeting scheduled 

deadlines. In these cases, the goal is to optimize over a 

set of performance indices which may be combined in a 

nonlinear objective function. For efficient utilization of 

GPU parallel resources adaptive resolution genetic 

algorithm (arGA) is developed [9].Through this 

algorithm the intensity of each individual is beamed 

using entropy measures. The algorithm is tested for 

different benchmarking problems [9] having different 

levels of difficulty. Parallelization of arGA and the 

arLS (local search) operators is done to gaina 

significant speedup. The results of the tests shows a 

speedup of 42x with single precision and 20x with 

double precision overnVidia Fermi C2050 GPU [9]. 

IV. STEADY STATE GENETIC ALGORITHM

Steady-State GA is implemented on GPU using 

CUDA in [23], where population individual data is 

accessed parallel to effectively speedup the process. 

The optimization problem is effectively solved by the 

means of Evolutionary Computing [24]. The steady 

state Genetic Algorithm is used to access optimization 

algorithms. These algorithms basically have selection 

for the reproduction and selection of survival 

implementation with concurrent kernel execution [22]. 

The implementation of Steady-State GA is done as 

follows: Firstly, from the population two individual 

(parents) are received by Streaming Multiprocessors 

(SM). Then, the kernel generates random number as 

GAs are stochastic search processes. BLX-  is adopted 

as blend crossover in the crossover process. The 

crossover operation is executed with two parents in SM, 

and the two offspring yielded are stored in the shared 

memory. Next, uniform mutation, fitness based sorting 

process and selection process is executed. This whole 

process is repeated until the loop terminates. Four test 

functions of the optimization problem Hyper sphere, 

Rosen rock, Ackley, and Griewank were used for 

comparing GPU and CPU computation on 

implementing Steady-State GA. The study is first 

performed upon CPU then with nVidia GeForce 

GTX480GPU gives a speedup of 3x to 6x then the 

previous implementation on CPU [19]. Moreover, the 

speed up ratio for Generational GA is much better than 

Steady-State GA on GPU since computational 

granularity is very small in the latter. So a large amount 

of execution time is occupied by the latency caused by 

the kernel calls. However, in terms of function values 

Steady-State GA are more efficient. 

V. CELLULAR GENETIC ALGORITHM

Genetic Algorithm have a subclass known as 

Cellular Genetic Algorithm (cGA) which provides the 

data of population structured in several specified 

topologies [19]. Cellular Genetic Algorithm (cGA) is 

implemented for multi-GPU to accelerate the execution 

process so that the system could be more efficient. 

cGAis used because of its high performance and swarm 

intelligence structure. Until the global optimum region 

is reached, cGA is able of keeping a high diversity in 

population. 

To manage the multi-GPU utilization each CPU 

thread is held responsible for one GPU device which is 

known as multi-threaded mode. Firstly, each CPU 

thread is associated to one GPU. This can be done if 

common structure (toroidal grid) is designed for all 

CPU threads. Then, the population is divided into 

subpopulations which is stored in the global memory of 

each GPU. Each GPU works individually irrespective 

of other GPU and the process is same as performed with 

single GPU implementation. To ensure that every GPU 

had finished its work a synchronization barrier is used 

and lastly, data is collected and transferred to other 

GPUs. The process executes until the while loop in 

pseudo code of cGA terminates. 

Three discrete optimization problems: Colville 

Minimization, Error Correcting Codes Design Problem 

(ECC) and Massively Multimodal Deceptive Problem 

(MMDP), and three continuous ones, Shifted Griewank 

function, Shifted Restringing function and Shifted Rosen 

rock function [20] [21] were selected for comparing the 

algorithm in terms of efficiency and efficacy. Statistical 

tests [19] are performed for each problem to ensure that 

the results are statistically significant. A common 



A Comprehensive Survey on Various Evolutionary Algorithms on GPU 

85

parameter, population size is used to make a meaningful 

comparison among all the algorithms.  

The analysis shows the average speed up with 

respect to CPU version ranges from 8 to 771 and for 

single GPU it is alike multi-GPU, with a little overhead 

in the latter case. The multi-GPUis more prominent in 

paralleling the algorithm and producing accurate results 

as there is a need of special maintenance to perform 

same experiment upon single GPU. 

Genetic Algorithm is tested and evaluated on 

parallel implementation on C-CUDA API on the 

parameters like population size, number of threads, 

problem size and problem of differing complexities 

with variation in the population individuals [19]. For an 

efficient implementation on GPGPU the solution is 

thoroughly implemented along with the operators like 

random number generation, initialization, selection 

operation, and mutation operations [13]. The nVidia 

GeForce 8800GTX shows overall speedup of 40–400 

on three different test problems [22]. Thus parallel 

implementation is more effective then sequential 

process as compared with clock time and accuracy. 

VI. CELLULAR AUTOMATA

Cellular Automata have various real life 

applications like physical system modeling, road traffic 

simulation, artificial life simulation, etc. [14] [15] [16]. 

Cellular automata design evolved from evolutionary 

algorithm and a part of Genetic Algorithm which is 

complex in nature. 

The Algorithm is parallelized and implemented 

upon GPGPU shows an efficient reduction in execution 

time. The rules of Cellular Automata take longer time 

period in evolution in sequential execution. The same 

Genetic Algorithm shows 31.34x to 314.94x speedup 

when executed upon nVidia GeForce FX280 GPU 

which is a significant reduction in execution time [17]. 

VII. CENTRAL FORCE OPTIMIZATION

The metaheurestic algorithm CFO is implemented 

upon GPGPU using local neighborhood and 

implemented CFO concepts [25]. The calculation of 

CFO independent upon the movement of probes which 

are scattered allover the space. The probes then slowly 

move towards the probehaving highest mass or fitness. 

PR-CFO is the most evaluated algorithm with the 

measures of initial position and acceleration vectors, 

fitness evaluation and probe movements [26]. The test 

problems are having the dimension of 30 to 100 of four 

different examples of Pseudo random CFO (PR-CFO). 

The PR-CFO is tested with four test types i.e. Ring, 

Standard, CUDA, CUDARing. PR-CFO shows a 

speedup of 4 to 400 using CUDA. PRCFOring and PR-

CFO CUDA ring on nVidia Tesla C1060 shows10, 000 

times faster results as compared with standard PR-

CFOalgorithm [26]. 

VIII. PGMOEA

The general Purpose GPU is efficiently used in 

optimizing the multiple objective problems. The 

particle gradient Multi-objective Evolutionary 

Algorithm (PGMOEA) is used to solve optimization 

problems. PGMOEA is first experimented on CPU and 

then after parallelizing the algorithm executed upon 

GPU which formed agreat speedup results [18]. The 

first step to implement PGMOEA is to read parameters 

such as population size, dimension size, maximum 

iterative generations, crossover rate, mutation rate and 

initialize particle texture array. Blank texture array i.e 

objective, rank value, entropy and free energy array are 

then generated to store different results. Next, the 

particle texture array is is loaded to GPU to calculate 

the rank of all the particles and the results are then 

stored in rank value texture array. The particles are 

sorted in the decreasing order of their ranks to make a 

mating pool. The higher order rank value particles are 

selected to perform crossover and mutation operation 

using Guo’s algorithm. The new particles generated 

through this process are then replaced with the last 

particles which have lower rank in mating pool to get a 

new population. The program is terminated if the halt 

condition is satisfied else particle texture array is again 

loaded to GPU and the process is repeated again. 

TABLE I SPEEDUP COMPARISON (SOURCE [18]) 

PGMOE 

Algorithm 

Example 1 Example 2 

Time (s) Speedup Time (s) Speedup 

On GPU 0.97 9.95 0.83 10.64 

On CPU 9.01 1.04 8.02 1.10 

The experiment is conducted upon two different 

examples. The first example shows a speedup of 9x 

with nVidia GeForceGTX285 then CPU result, while 

the second example is 10x faster than that of CPU [18]. 

The speedup comparison is shown bellowing Table I. 

IX. PSO ALGORITHM

PSO is a met heuristic algorithm works by having a 

swarm of particles [10]. These particles are moved 

around in the search-space according to a few simple 

formulae. The movements of the particles are guided by 

their own best known position in the search-space as 

well as the entire swarm best known position [11]. 

When improved positions are being discovered 

these will then come to guide the movements of the 

swarm. PSO is one of the types of Evolutionary 

Algorithm used to optimize the multiple objective 

problems. When an optimization problem involves 

more than one objective function, the task of finding 

one or more optimal solutions is known asmulti-

objective optimization [10]. 

For implementing PSO code in C-CUDA the 

allocation of vector/matrix is done on the device. 
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Random numbers are generated using Mersenn Twister 

code and then based on objective functions are 

evaluated. After evaluation the global best particle of 

whole swarm is updated. Next, the sum and 

multiplication operations are performed on the vectors 

which describe the particle. The benchmark functions 

with many local minima mentioned in table A1 

appendix [12] are selected. The algorithm is tested upon 

three different platforms of C, Matlab and C-CUDA. 

The parallel implementation of PSO on nVidia GTX 

280 gives 17 to 41 times speedup in computing time in 

C-CUDA as compared with the Cand Matlab as Shown 

in Fig. 1 [12]. Fig. 1  Computing Time for C-CUDA, C, and MATLAB 

 (Source [12]) 

TABLE II RUNNING TIME RESULTS USING C-CUDA AND C FOR THE BENCHMARK OPTIMIZATION PROBLEMS WITH 100 DIMENSIONS,

100 INDIVIDUALS, 10, 000 AND 100, 000 ITERATIONS (SOURCE [13]) 

Benchmark Functions Implementation 

Language 

10, 000 Iterations 100, 000 Iterations 

Computing 

Time(s) 

Standard

Deviation 

Speedup Computing 

Time(s) 

Standard

Deviation 

Speedup 

Schwefel-F1(x) C-CUDA 0.64 0.01 NA 27.72 0.45 NA 

C 9.59 0.21 15.05 983.65 30.91 35.48 

Rastrigin-F2(x) C-CUDA 0.64 0.01 NA 27.47 0.38 NA 

C 8.39 0.27 13.15 900.97 29.50 32.80 

Ackley-F3(x) C-CUDA 0.72 0.01 NA 36.33 1.38 NA 

C 7.10 0.25 9.91 736.68 39.56 20.28 

Griewank- F4(x) C-CUDA 0.69 0.01 NA 31.44 0.37 NA 

C 10.39 0.44 14.96 1005.35 4.33 31.98 

Generalized penalized 

function-F5(x) 

C-CUDA 0.76 0.02 NA 37.88 1.16 NA 

C 13.75 1.13 18.07 1344.59 72.33 35.50 

Generalized penalized 

function-F6(x) 

C-CUDA 0.72 0.01 NA 37.44 1.50 NA 

C 13.76 1.36 19.04 1300.11 81.40 34.73 

TABLE III COMPARISON TABLE OF DIFFERENT EVOLUTIONARY ALGORITHMS ON GPU AND CPU 

Algorithm Experimental Set up Time Speed up 

GPU (nVidia) CPU GPU CPU GPU CPU 

Island based GA GTX580 Intel Xeon 

Six-Core

5.67 TFLOPS – 653.68 11.32 

Advanced GA C2050 (Double precision) Intel Core 2 Duo – – 20x  

C2050 (Single precision) Intel Corei7 40x 

Steady-state GA Geforce GTX480 Intel Core i7 4.874 - 4.780s 14.46-28.56s 3.0x-6.0x  

Cellular GA GTX-285 Intel Quad 

processor 

0.021 - 1.821s 0.266 - 1450.415s 8 - 771 –

Binary and Real 

coded GA 

Tesla C1060 AMD Athlon 64 

X2 Dual Core 

RGA

0.003365s - 

22.534169s 

RGA

0.071639 - 4851.69 

 RGA 

21.289 - 

215.304 

Cellular

Automata 

Laptop GeForce 8600M GS Intel Core 2 Duo 

Processor

– – 31.34x  

Work-

station

GeForce FX 280 Intel Core 2 Duo 

Processor

– – 314.97x  

PGMEOA GeForce GTX285 Intel Core (TM )2 

Q8200 

0.83s - 0.97s 8.02s - 9.01s 9.95 - 10.64 1.04 - 

1.10 

CFO Tesla C1060 Intel Xeon 5504 

Quad Core 

– – 10, 000x  

Table III (Contd.)… 
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…Table III (Comparison Table of Different Evolutionary Algorithms on GPU and CPU) 

Algorithm Experimental Set up Time Speed up 

GPU (nVidia) CPU GPU CPU GPU CPU 

PSO GTX 280 AMD Athlon x2 

3800 +  2.0 GHz 
Dual Core 

– – 17 to 41x  

DE GTX285 AMD Athlon x2 

5200 +  2.7 GHz 
Dual Core 

F1(x)
5.84 

F6(x)7.2
5

F1(x)481.
38 

F6(x)682.
76 

20x to 35x  

Many threaded DE 
and GA 

Tesla C2050 Dual Core AMD 
Opteron 

– – DE 

19 - 34 x 

X. DIFFERENTIAL EVOLUTIONARY ALGORITHM

GPGPU is proved to be great architectural unit in 
reducing the processing time [13]. The Differential 
Algorithm which is one of the parts of EAs is 
implemented upon CPU using C-CUDA. The 
motivating features of Differential Algorithm are easy 
for parallelization and convergence properties which 
intern gives an appropriate result. The algorithm is first 
tested upon CPU then on nVidia GTX285 with 1GB 
GDDR3 GPU with the speedup outcomes. 

The implementations of DE algorithm and 
benchmark functions are same as used for PSO 
implementation on GPU. GPU gives 20x to 35x faster 
results which proves GPU is much more effective and 
efficient than Differential Algorithm on CPU [13]. The 
Speedup comparison results are shown in Table II. 

XI. DE VERSUS GAS

In this paper [32], two evolutionary meta-heuristic 

algorithms DE and GAs, many threaded implementation 

is done on CUDA and results were compared when 

Independent task scheduling is solved. Mapping of set of 

task to a set of resources is known as Independent task 

scheduling [33] [34]. Since it is a NP-complete problem 

so two objectives make span and flow time are used 

during task mapping for optimization. 
Whole meta task can be accelerated by minimizing 

make span and the efficient utilization of the computing 
environment can be done by minimizing flow time. 

 (1) 

 (2) 

Real coordinates are used in DE [35]for encoding 
real vectors. Truncation of real encoded vector 
coordinates is done to translateit into schedule 
representation. For this fitness function f(S):Sched R
is defined which evaluates each schedule 

 (3) 

For minimization purpose a standard proposed in 
[34] is used. The simulation matrix is derived from ETC 
matrix. The time taken by the machine to execute a task 
can be estimated using Expected Time to Compute 
(ETC) matrix. The average final fitness value is 
calculated by both the algorithms for each ETCmatrix. 

The analysis shows that the DE is better than GA for 
solving Independent task scheduling problem and leads 
to better results for many threaded implementation on 
CUDA.

XII. CONCLUSION 

In this paper we present different optimization 

algorithm with tremendous speedups in the computation 

time. The overall GPU performance of multi-GPU 

Island-based GA for solving Knapsack problem reaches 

5.67 TFLOPS. MINLP archived an overall speedup of 

20x to 42x using nVidia Tesla C2050 GPU as compared 

to Intel Core i7 920 CPU processor. On implementing 

Steady state GA on a GPU approximately 6 times faster 

results are obtained than the corresponding CPU 

implementation. The implementation of Cellular 

Genetic Algorithm for a multi-GPU platform leads to 

speedup range from 8 to 771 with respect to the CPU 

version. The new binary-coded and real-coded Genetic 

Algorithm using CUDA leads to a performance 

improvement with the speedup of 40x to 400x. Central 

Force Optimization (CFO)results in reduction of 

computing time and a speedup of 10, 000x. The 

computing time gets accelerated up to 17 to 41 times in 

C-CUD Aafter PSO is paralleled implemented on 

NVIDIA GTX280. GPU is much more effective and 

efficient for Differential Evolutionary algorithm since it 

gives 20x to 35x faster results than CPU. The Cellular 

Automata shows 314.97x as compared with the 

sequential implements. The advantage of GPU 

computing is that it is fast and cheap. A theoretical 1.5 

TFLOPS is obtained by the newest nVIDIA GTX 580 

at $500. The major drawback is not all algorithms can 

have theoretical speedup and are hard to program. 
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