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Abstract: Biogeography-Based Optimization (BBO) is one of
the population based algorithms that has out performed most
of the Evolutionary Algorithms (EAs) in various optimization
applications. BBO is based on the study of geographical dis-
tribution of biological organisms over space and time. Yagi-
Uda antenna design is most widely used antenna at VHF and
UHF frequencies due to high gain, directivity and ease of con-
struction. However, designing a Yagi-Uda antenna involves de-
termination of wire-lengths and their spacings that bear highly
complex and non-linear relationships with gain and impedance,
etc. For example, if gain is intended to increase then imagi-
nary part in impedance becomes significant whereas real part
becomes negligible. In this paper, Non-dominated Sorting along
with BBO, its variants and PSO (Particle Swarm Optimization)
are investigated for multi-objective optimization of six-element
Yagi-Uda antenna designs to optimize two objectives, viz. gain
and impedance, simultaneously. The best results and average of
multiple monte-carlo runs are presented in the ending sections
of the paper for fair comparative study of convergence perfor-
mance of the stochastic EAs.
Keywords: Non-dominated Sorting, Bio-geography Based Opti-
mization, Particle Swarm Optimization, Yagi-Uda Antenna, Multi-
Objective Optimization, Antenna Gain, Antenna Impedance, BBO
Migration Variants.

I. Introduction

Antenna is an electrical device that acts as an interface be-
tween free-space radiations and transmitter or receiver. The
choice of an antenna depends on various factors such as req-
uisite gain, impedance, bandwidth and frequency of opera-
tion,etc. It is simple to construct and has a high gain, typi-
cally greater than 10dB at VHF and UHF frequency range. It
is a parasitic linear array of parallel dipoles, one of which is
energized directly by transmission-line while the other acts
as a parasitic radiators whose currents are induced by mutual
coupling. The characteristics of the antenna are affected by
all geometric parameters of array.
A Yagi-Uda antenna was invented in 1926 by H. Yagi and
S. Uda at Tohoku University [Uda and Mushiake, 1954] in

Japan, however, published in English in 1928 [Yagi, 1928].
Since its invention, continuous efforts have been put in opti-
mizing the antenna for gain, impedance and bandwidth, etc.,
using different optimization techniques based on traditional
mathematical approaches [Bojsen et al., 1971; Chen and
Cheng, 1975; Cheng and Chen, 1973; Cheng, 1971, 1991;
Reid, 1946; Shen, 1972] and Artificial Intelligence (AI) tech-
niques [Baskar et al., 2005; Jones and Joines, 1997; Li, 2007;
Singh et al., 2010, 2007; Venkatarayalu and Ray, 2004; Wang
et al., 2003]. Fishenden and Wiblin proposed an approximate
design of Yagi aerials for maximum gain in [Fishenden and
Wiblin, 1949]. Ehrenspeck and Poehler have given a man-
ual approach to maximize the gain of the antenna by varying
various lengths and spacings of its elements [Ehrenspeck and
Poehler, 1959].
Later, the availability of computer software at affordable
prices made it possible to optimize antennas numerically.
Bojsen et al. proposed another optimization technique to
calculate the maximum gain of Yagi-Uda antenna arrays with
equal and unequal spacings between adjoining elements [Bo-
jsen et al., 1971]. Cheng et al. have used optimum spac-
ings and lengths to maximize the gain of a Yagi-Uda antenna
[Chen and Cheng, 1975; Cheng and Chen, 1973]. Cheng has
proposed optimum design of Yagi-Uda antenna where an-
tenna gain function is highly non-linear, [Cheng, 1991].
In 1975, John Holland introduced Genetic Algorithms (GAs)
as a stochastic, swarm based AI technique, inspired from nat-
ural evolution of species, to optimize arbitrary system for cer-
tain cost function. Then many researchers investigated GAs
to optimize Yagi-Uda antenna designs for gain, impedance
and bandwidth separately [Altshuler and Linden, 1997; Cor-
reia et al., 1999; Jones and Joines, 1997] and collectively
[Kuwahara, 2005; Venkatarayalu and Ray, 2003; Wang et al.,
2003]. Baskar et al., have optimized Yagi-Uda antenna us-
ing Comprehensive Learning Particle Swarm Optimization
(CLPSO) and presented better results than other traditional
optimization techniques [Baskar et al., 2005]. Li has used
Differential Evolution (DE) to optimize geometrical parame-
ters of a Yagi-Uda antenna and illustrated the capabilities of
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the proposed method with several Yagi-Uda antenna designs
[Li, 2007]. Singh et al. have investigated another useful,
stochastic global search and optimization technique named
as Simulated Annealing (SA) for the optimal design of Yagi-
Uda antenna [Singh et al., 2007].
In 2008, Dan Simon introduced yet another swarm based
stochastic optimization technique based on science of bio-
geography where features sharing among various habitats,
i.e., potential solutions, is accomplished with migration op-
erator and exploration of new features is done with mutation
operator [Simon, 2008]. Singh et al. have presented BBO
as a better optimization technique for Yagi-Uda antenna de-
signs, [Singh et al., 2010].
Du et al. proposed the concept of immigration refusal in
BBO aiming at improved performance [Du et al., 2009].
In Ma and Simon introduced another migration operator
named as Blended migration, to solve constrained optimiza-
tion problems and make BBO convergence faster [Ma and
Simon, 2011]. Pattnaik et al. have proposed Enhanced Bio-
geography Based Optimization (EBBO) in which duplicate
habitats, created due to migration of features, is replaced with
randomly generated habitats to increase the exploitation abil-
ity of BBO algorithm [Pattnaik et al., 2010].
The different migration and mutation variants of BBO for
gain maximization optimization of the antenna design are
investigated in [Singh and Sachdeva, 2012b] and [Singh
and Sachdeva, 2012a], respectively. Non-dominated sorting
BBO (NSBBO) algorithm was proposed and investigated to
attain multiple objectives, viz. maximum gain and antenna
impedance of 75Ω to optimize the antenna designs in [Singh
et al., 2012b].
Most of EAs, due to their population based nature, are able to
approximate whole pareto front (PF) of a Multiobjective Op-
timization Problems (MOP) in a single run [Stadler, 1979].
There has been a growing interest in applying EAs to deal
with MOPs since Schaffer’s seminal work [Schaffer, 1985],
and these EAs are called Multi-Objective Evolutionary Algo-
rithm (MOEAs). The Nondominated Sorting Genetic Algo-
rithm (NSGA) proposed in [Srinivas and Deb, 1994] was one
of the first such EAs to maintain a diverse set of solutions.
PSO has proven to be an efficient optimization method for
single objective optimization and has also shown promising
results for solving multiobjective optimization problems in
[?]. What is in common among these works is the use of a
basic form of PSO first introduced by Kennedy and Eberhart
[Kennedy and Eberhart, 1995]. The basic form of PSO has
some serious limitations in particular when dealing with mul-
tiobjective optimization problems. Lee introduced a modi-
fied PSO, Non-Dominated Sorting Particle Swarm Optimizer
(NSPSO) for improved performance [Li, 2003]. The conver-
gence performance of NSPSO and NSBBO were compared
in [Singh et al., 2012a] while optimizing antenna impedance
and antenna gain.
After this brief historical background survey, remaining pa-
per is outlined as follows: Section II explains multi-objective
optimization problem and non-dominated sorting algorithm.
Section III is dedicated to BBO algorithm and its significant
migration variants. PSO is explained in Section IV. Yagi-
Uda antenna design parameters and formulation as optimiza-
tion are discussed in section V. In Section VI, simulation

results of multiple monte-carlo runs are presented and ana-
lyzed. Finally, conclusions and future scope have been dis-
cussed in Section VII.

II. Multi-Objective Optimization

A. Multi-Objective Problems

In single-objective optimization, optimal solution is easy to
obtain as compared to multi-objective scenario where solu-
tion may not exist which could be globally optimal with re-
spect to all objectives. Objectives under consideration may
be of conflicting in nature, i.e., improvement in one objec-
tive may cause declination in other objective(s). One way to
solve MOP is to scalarize the vector of objectives into one
objective by averaging the objectives with a weight vector.
This process allows a simpler optimization algorithm to be
used, however, the obtained solution largely depends on the
weight vector used in the scalarization process.
A common difficulty with MOP is the conflicting nature of
objectives solution is feasible that could be globally the best
for all objectives [Hans, 1988]. Thus a most favourable so-
lution is opted which offers least objective conflict. To find
such solutions all classical methods scalarize the objective
vector into one objective by three commonly used methods:

1) Method of Objective Weighting

Multiple objective functions are combined into one overall
objective function, Z, as given by (1):

Z =

N∑
i=1

wifi(x), (1)

where x ∈ X , is the feasible region. The weightswi are frac-
tional numbers (0 ≤ wi ≤ 1), and all weights are summed
up to one, i.e.,

∑N
i=1 wi = 1. In this method, the optimal

solution is controlled by the weight vector w. It is clear
from equation (1) that the preference of an objective can be
changed by modifying the corresponding weight.

2) Method of Distance Functions

In this method, the scalarization is achieved by using a
demand-level vector ȳ which has to be specified by the deci-
sion maker. The single objective function derived from mul-
tiple objectives is as given by (2):

Z = [

N∑
i=1

|fi(x)− ȳi|r]1/r (2)

where 1 ≤ r < ∞, and x ∈ X , is the feasible region. Usu-
ally an Euclidean metric r = 2 is chosen, with ȳ as individual
optima of objectives. It is important to note that the solu-
tion obtained by solving equation (2) depends on the cho-
sen demand-level vector. Arbitrary selection of a demand
level may be highly undesirable. This is because a wrong
demand level will lead to a non Pareto-optimal solution. As
the solution is not guaranteed, the decision maker must have
a thorough knowledge of individual optima of each objective
prior to the selection of demand level. In a way this method
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works as a goal programming technique imposing a goal vec-
tor/deman level, ȳ, for given objectives. This method is simi-
lar to the method of objective weighting. The only difference
is that in this method the goal for each objective function
is required to be known whereas in the previous method the
relative importance of each objective is required.

3) Min-Max Formulation

This method is different in principle than the above two
methods. It attempts to minimize the relative derivations of
the single objective functions from individual optimum, i.e.,
That is, it tries to minimize the objective conflicts. For a
minimization problem, the corresponding min-max problem
is formulated as given by (3):

minimize F (x) = maximize [Zj(x)] (3)

where x ∈ X , is the feasible region and Zj(x) is calculated
for non-negative target optimal value f̄j > 0 as follows:

Zj(x) =
fj − f̄j
f̄j

(4)

This method can yield, the best possible compromised solu-
tion when objectives with equal priority are required to be
optimized. However, priority of each objective can be var-
ied by introducing dimensionless weights in the formulation.
This can also be modified as a goal programming technique
by introducing a demand level vector in the formulation.
These above methods result in a single solution. The so-
lutions obtained largely depend on the underlying weight-
vector or demand-level.

B. Non-Dominated Sorting

To overcome these drawbacks the Pareto optimality concept,
was first proposed by Edge-Worth and Pareto [Stadler, 1979].
There exists a set of solutions which are the best tradeoff so-
lutions important for decision making and are often superior
to rest of solutions when all objectives are considered, how-
ever, inferior for one or more objectives. These solutions are
termed as pareto-optimal solutions or non-dominated solu-
tions and others are dominated solutions.
MOPs result in pareto-optimal solutions instead of a single
optimal solution in every run. Every solution from non-
dominated set is acceptable as none of them is better than its
counterpart. However, final selection of a solution is done by
the designer based on nature of problem under consideration.
Problem, presented in this paper, of optimizing an antenna
design has two objectives, viz. (i) desired resistive antenna
impedance and (ii) maximum antenna gain. Desired antenna
impedance, i.e., (Re+ jIm)Ω, is formulated as fitness func-
tion, f1, given as (5), that is required to be minimized.

f1 = |Re− desired impedance|+ |Im| (5)

Whereas, second objective of gain maximization is also con-
verted into minimization fitness function, f2, given as (6)

f2 =
1

Gain
(6)
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Figure. 1: Non-dominated sorting and pareto-fronts

Suppose every solution, in a swarm of NP solutions, yields
f1k and f2k as fitness values (where k = 1, 2, . . . , NP ), us-
ing (5) and (6), that belongs to a set of either non-dominated
solution set, P , or dominated solutions, D. An i-th solution
in set P dominates the j-th solution in set D if it satisfies
the condition of dominance, i.e., f1i ≤ f1j and f2i ≤ f2j ,
where both objectives are to be minimized. This condition of
dominance is checked for every solution in the universal set
of NP solutions to assign it either P set or D set. Solution
members of set P form the first non-dominated front, i.e., the
pareto optimal front, and then remaining solutions, those be-
long to set D, are made to face same condition of dominance
among themselves to determine next non-dominated front.
This process continues till all solutions are classified into dif-
ferent non-dominated fronts, as shown in Fig. 1. Preference
order of solutions is to be based on designer’s choice, how-
ever, here in this paper euclidian distance is determined from
origin for every member solution in a non-dominated front
and are picked up in ascending order. The pseudo code of
non-dominated sorting approach is depicted in Algorithm 4.

Algorithm 1 Pseudo Code for Non-dominated sorting
for  s = 1 to NP 

sf1 =  ImRe  impdesired    and   

sf 2 =
gain

1
 

end for 

f = 1    % Non-dominated front  f 

All solutions in the swarm set  F 

While  (No. solutions in set F  ≠ 0) 

      f = f+1 

     for i = 1 to NP 

       for j = 1 to NP 

         if ( i ≠ j) 

           if (f1i ≤ f1j  and  f2i ≤ f2j ) 

             j-th solution fD  
           else 

                j-th solution fP  

           end if  

         end if 

       end for 

     end for 

     F = Df 

End while 

Designing Yagi-Uda Antenna using Gain-Impedance Multiobjective Optimization 205



III. Biogeography Based Optimization

As name suggests, BBO is a population based global opti-
mization technique which got inspiration from the science
of biogeography, i.e., study of distribution of animals and
plants among different habitats over time and space. BBO re-
sults presented by researchers are better than other EAs such
as, PSO, GAs, SA and DE, etc. [Baskar et al., 2005; Jones
and Joines, 1997; Rattan et al., 2008; Venkatarayalu and Ray,
2003].
Originally, biogeography was studied by Charles Darwin
[Darwin, 1995] and Alfred Wallace [A.Wallace, 2005]
mainly as descriptive study. However, in 1967, the work car-
ried out by MacAurthur and Wilson [MacArthur and Wilson,
1967] changed this view point and proposed a mathemati-
cal model for biogeography and made it feasible to predict
the number of species in a habitat. Mathematical models of
biogeography describe migration, speciation, and extinction
of species in various islands. The term island is used for
any habitat that is geographically isolated from other habi-
tats. Habitats that are well suited residences for biologi-
cal species are referred to have high Habitat Suitability In-
dex (HSI) value. However, HSI is analogues to fitness in
other EAs whose value depends upon many factors such as
rainfall, diversity of vegetation, diversity of topographic fea-
tures, land area, and temperature, etc. The factors/variables
that characterize habitability are termed as Suitability Index
Variables (SIVs). In other words, HSI is dependent variable
whereas SIVs are independent variables.
The habitats with a high HSI tend to have a large population
of its resident species, that is responsible for more probabil-
ity of emigration (emigration rate, µ) and less probability of
immigration (immigration rate, λ) due to natural random be-
havior of species. Immigration is the arrival of new species
into a habitat or population, while emigration is the act of
leaving one’s native region. On the other hand, habitats with
low HSI tend to have low emigration rate, µ, due to sparse
population, however, they will have high immigration rate,
λ. Suitability of habitats with low HSI is likely to increase
with influx of species from other habitats having high HSI.
However, if HSI does not increase and remains low, species
in that habitat go extinct that leads to additional immigra-
tion. For sake of simplicity, it is safe to assume a linear re-
lationship between HSI (or population) and immigration and
emigration rates and same maximum emigration and immi-
gration rates, i.e., E = I , as depicted graphically in Figure 2.

For k-th habitat values of emigration rate, µk, and immigra-
tion rate, λk, are given by (7) and (8).

µk = E · HSIk
HSImax −HSImin

(7)

λk = I · (1− HSIk
HSImax −HSImin

) (8)

The immigration of new species from high HSI to low HSI
habitats may raise the HSI of poor habitats as good solutions
are more resistant to change than poor solutions whereas
poor solutions are more dynamic and accept a lot of new fea-
tures from good solutions.
Each habitat, in a population of size NP , is represented by
M -dimensional vector as H = [SIV1, SIV2, . . . , SIVM ]

 E = I 
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Immigration Rate () 
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Figure. 2: Migration Curves

where M is the number of SIVs (features) to be evolved
for optimal HSI. HSI is the degree of acceptability that is
determined by evaluating the cost/objective function, i.e.,
HSI = f(H). Following subsections describes the dif-
ferent migration variants of BBO. i.e., Standard BBO [Si-
mon, 2008], Blended BBO[Ma and Simon, 2011], Immigra-
tion Refusal BBO [Du et al., 2009], Enhanced BBO [Pattnaik
et al., 2010].

A. Standard BBO

Algorithmic flow of standard BBO involves two mecha-
nisms, i.e., migration and mutation, these are discussed in
the following subsections.

1) Migration

Migration is a probabilistic operator that improves HSI of
poor habitats by sharing features from good habitats. During
migration, i-th habitat, Hi (where i = 1, 2, . . . , NP ) use its
immigration rate, λi given by (8), to probabilistically decide
whether to immigrate or not. In case immigration is selected,
then the emigrating habitat, Hj , is found probabilistically
based on emigration rate, µj given by (7). The process of
migration is completed by copying values of SIVs from Hj

to Hi at random chosen sites. The pseudo code of migration
operator is depicted in Algorithm 2.

Algorithm 2 Pseudo Code for Standard Migration
for  i = 1 to NP do 

      Select Hi with probability based on λi 

      if Hi is selected then  

          for  j = 1 to NP do 

               Select Hj with probability based on µj 

               if Hj is selected 

                   Randomly select a SIV(s) from Hj 

                   Copy them SIV(s) in Hi  

                end if 

           end for 

      end if 

end for 

2) Mutation

Mutation is another probabilistic operator that modifies the
values of some randomly selected SIVs of some habitats that
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are intended for exploration of search-space for better solu-
tions by increasing the biological diversity in the population.
Here, higher mutation rates are investigated on habitats those
are, probabilistically, participating less in migration process.
The mutation rate, mRate, for k-th habitat is calculated as
(9)

mRatek = C ×min(µk, λk) (9)

where µk and λk are emigration and immigration rates, re-
spectively, given by (7) and (8) corresponding to HSIk. To
reduce fast generation of duplicate habitats,here, C, is cho-
sen as 3 and to keep exploitation rate much higher as com-
pared to other EAs. The pseudo code of mutation operator is
depicted in Algorithm 3.

Algorithm 3 Pseudo Code for Mutation
mRate = C x min(µk, λk) 

for n = 1 to NP do 

 for  j = 1 to number of SIVs do 

       Select Hj(SIV) with mRate 

            if Hj(SIV) is selected then 

                   Replace Hj(SIV) with randomly generated SIV value 

           end if 

      end for 

end for 

B. Blended BBO

Blended migration operator is a generalization of the stan-
dard BBO migration operator and inspired by blended
crossover in GAs [McTavish and Restrepo, 2008]. In blended
migration, a SIV value of immigrating habitat, ImHbt, is
not simply replaced by a SIV value of emigrating habitat,
EmHbt, as happened in standard BBO migration operator.
Rather, a new solution feature, i.e., SIV value is comprised
of two components as ImHbt(SIV )← α ·ImHbt(SIV )+
(1−α)·EmHbt(SIV ). Here α is a random number between
0 and 1. The pseudo code of blended migration is depicted
in Algorithm 4

Algorithm 4 Pseudo Code for Blended Migration

for  i = 1 to NP do 

      Select Hi with probability based on λ i 

      if Hi is selected then  

          for  j = 1 to NP do 

               Select Hj with probability based on µj 

               if Hj is selected 

                             SIVHSIVHSIVH jii   1         

    end if 

          end for 

      end if 

end for 

C. Immigration Refusal BBO

In BBO, if a habitat has high emigration rate, i.e, the proba-
bility of emigrating to other habitats is high and the probabil-
ity of immigration from other habitats is low. However, the

low probability does not mean that immigration will never
happen. Once in a while, a highly fit solution may receive
solution features from a low-fit solution that may degrade
its fitness. In such cases, immigration is refused to prevent
degradation of HSI values of habitats. This BBO variant
with conditional migration is termed as Immigration Refusal
whose performance with testbed of benchmark functions is
encouraging [Du et al., 2009]. The pseudo code of Immigra-
tion Refusal migration is depicted in Algorithm 5

Algorithm 5 Pseudo Code for Immigration Refusal BBO

for  i = 1 to NP do 

      Select Hi with probability based on λ i 

      if Hi is selected then  

          for  j = 1 to NP do 

               Select Hj with probability based on µj 

               if Hj is selected 

                   if ((fitness(Hj) > (fitness(Hi)) 

                        apply migration  

        end if 

                end if 

           end for 

      end if 

end for 

D. Enhanced BBO

Standard BBO migration operator tends to create duplicate
solutions which decreases the diversity in the population. To
prevent this diversity decrease in the population, duplicate
habitats are replaced with randomly generated habitats. This
leads to increase exploration of new SIV values. In EBBO,
clear duplicate operator is integrated in basic BBO algorithm
to improve its performance. The migration pseudo code of
Enhanced BBO is depicted in Algorithm 6

Algorithm 6 Pseudo Code for Enhanced BBO

for  i = 1 to NP do 

      Select Hi with probability based on λ i 

      if Hi is selected then  

          for  j = 1 to NP do 

               Select Hj with probability based on µj 

               if Hj is selected 

                   if ((fitness(Hj)  ==  (fitness(Hi)) 

                        eliminate duplicates  

        end if 

                end if 

           end for 

      end if 

end for 

IV. Particle Swarm Optimization

PSO algorithm is another stochastic swarm intelligence
based global search algorithm. The motivation behind PSO
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algorithm is social behavior of animals, e.g., flocking of
birds and fish schooling. PSO has its origin in simula-
tions created to visualize the synchronized choreography of
a bird flock by incorporating certain features like nearest-
neighbor velocity matching and acceleration by distance
[Baskar et al., 2005; Kennedy and Eberhart, 1995; Parsopou-
los and Vrahatis, 2002; Shi et al., 2001]. Later on, it
was realized that the simulation could be used as an opti-
mizer and resulted in the first simple version of PSO, the
birds/particles have (1) adaptable velocities that determines
their movement in the search space, (2) memory which en-
able them for remembering the best position in the search
space ever visited and (3) the knowledge of the overall best
located particle in the swarm. The position corresponding
to the past best fitness is known as, pbest, and the over-
all best out of all NP the particles in the population is
called global best or gbest. Consider that the search-space
is M -dimensional and i-th particle location in the swarm
can be represented by Xi = [xi1, xi2, ....xid..., xiM ] and
its velocity can be represented by another M -dimensional
vector Vi = [vi1, vi2, ....vid.., viM ]. Let the previously
best visited location position of this particle be denoted by
Pi = [pi1, pi2, ....pid.., piM ], whereas, g-th particle, i.e.,
Pg = [pg1, pg2, ....pgd.., pgM ], is globally best particle lo-
cation. Figure 3 depicts the vector movement of particle el-
ement from location xnid to xn+1

id in (n + 1)-th iteration that
is being governed by past best location, pnid, global best loca-
tion, pngd, and current velocity vnid. Alternatively, the whole
swarm is updated according to the equations (10) and (11)
suggested by Shi & Eberhart [Shi and Eberhart, 1999].

vm+1
id = χ(αvmid +ϕ1r1(pmid−xmid)+ϕ2r2(pmgd−xmid)) (10)

xm+1
id = xmid + vm+1

id (11)
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Figure. 3: Movement of i-th particle in 2-D search space

Here, inertia weight (w), cognitive learning parameter (ϕ1),
social learning parameter (ϕ2) and constriction factor (χ),
are strategy parameters of PSO algorithm, while r1 and r2
are random numbers uniformly distributed in the range [0,1].
Generally the inertia weight,w, is not kept fixed and is varied
as the algorithm progresses. The particle movements is re-
stricted with maximum velocity, ±Vmax, to avoid jump over
the optimal location as per search space requirements.
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Figure. 4: Six-element Yagi-Uda Antenna

V. Antenna Design Parameters

Yagi-Uda antenna consists of three types of elements: (a)
Reflector–biggest among all and is responsible for blocking
radiations in one direction. (b) Feeder–which is fed with the
signal from transmission line to be transmitted and (c) Direc-
tors–these are usually more then one in number and respon-
sible for unidirectional radiations. Figure 4 depicts a typical
six-wire Yagi-Uda antenna where all wires placed parallel to
x-axis and along y-axis. Middle segment of the reflector el-
ement is placed at origin, x = y = z = 0, and excitation is
applied to the middle segment of the feeder element.
Designing a Yagi-Uda antenna involves determination of
wire-lengths and wire-spacings in between to get maximum
gain and desired impedance, etc., at an arbitrary frequency
of operation. An antenna with N elements requires 2N − 1
parameters, i.e., N wire lengths and N − 1 spacings, that are
to be determined. These 2N −1 parameters, collectively, are
represented as a string referred as a habitat in BBO given as
(12).

H = [L1, L2, . . . , LN , S1, S2, . . . , SN−1] (12)

where LS are the lengths and SS are the spacing of an-
tenna elements. An incoming field sets up resonant cur-
rents on all the antenna elements which re-radiate signals.
These re-radiated signals are then picked up by the feeder
element, that leads to total current induced in the feeder
equivalent to combination of the direct field input and the
re-radiated contributions from the director and reflector ele-
ments. This makes highly non-linear and complex relation-
ships between antenna parameters and its characteristics like
gain and impedance, etc.

VI. Simulation Results and Discussions

To present fair analysis, a six-wire Yagi-Uda antenna design
is optimized for 10 times using 300 iterations under similar
evolutionary conditions. The universe of discourses to search
optimal values of wire-lengths and wire-spacings are fixed as
0.40λ − 0.50λ and 0.10λ − 0.45λ, respectively. However,
cross-sectional radius and segment size for all wires are kept
constant, i.e., 0.003397λ and 0.1λ, respectively, where λ is
the wavelength corresponding to frequency of operation of
300MHz. The C++ programming platform is used for algo-
rithm coding, whereas, method of moments based software,
Numerical Electromagnetic Code (NEC2) [Burke and Pog-
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gio, 1981], is used to evaluate antenna designs. Both ob-
jectives, gain and impedance, are optimized simultaneously
using two fitness functions, given by (5) and (6).

A. Convergence flow for 75Ω antenna impedance and maxi-
mal gain

Six-wire Yagi-Uda antenna designs are evolved using NS-
BBO and NSPSO for 75Ω resistive antenna impedance and
zero reactive antenna impedance, whose fitness function is
given as (5).
Average of 10 Monte-Carlo simulation runs for 30 habitats
for each algorithm are plotted in Fig. 5 to show convergence
flow while achieving (a) maximum antenna gain, (b) 75Ω
resistive antenna impedance and (c) zero reactive antenna
impedance.
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Figure. 5: NSBBO and NSPSO Convergence flow for 75Ω
resistive antenna impedance

From the plots, it can be observed that best compromised so-
lution, sometimes lead to poor solutions in terms of gain or
impedance. However, with increasing iteration number best
compromised solution improves in aggregate that may, im-

prove further, if maximum iteration number is kept higher.
Reasons for poor performance of PSO may include use of
global best PSO model, where each particle learns from ev-
ery other particle in the swarm and globally best particle,
therefore, is prone to get trapped in local optima. Typically,
the best antenna designs obtained during process of optimiza-
tion and the average results of 10 monte-carlo runs, depicted
in Fig. 5, are tabulated in Table 1.

B. Convergence flow for 50Ω antenna impedance and maxi-
mal gain

Average of 10 Monte-Carlo simulation runs for 50 habitats
using NSBBO and NSPSO are plotted in Fig. 6 to show con-
vergence flow while achieving (a) maximum antenna gain,
(b) 50Ω resistive antenna impedance and (c) zero reactive
antenna impedance.
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Figure. 6: Average NSBBO and NSPSO Convergence flow
for 50Ω antenna impedance and maximal gain

From the plots, it can be observed that almost every time
NSPSO gets trapped in local optimal for gain objective func-
tion and at the same time reactive impedance is capacitive
and longer than that of Fig. 5. Typically, the best antenna
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Table 1: The best antenna designs evolved for 75Ω resistive
antenna impedance and maximal gain.

Element Standard BBO PSO
Length Spacing Length Spacing

1(λ) 0.4732 - 0.4732 -
2(λ) 0.4780 0.1979 0.4787 0.1953
3(λ) 0.4397 0.1631 0.4396 0.2092
4(λ) 0.4316 0.2735 0.4343 0.2411
5(λ) 0.4193 0.3902 0.4167 0.4353
6(λ) 0.4307 0.3360 0.4334 0.3298

Best Gain 12.58 dBi 12.28 dBi
Best Imp. 74.9414 + j 0.0364 Ω 72.903 + j 1.490 Ω

Average Gain 11.16 dBi 10.925 dBi
Best Imp. 74.9458 - j 0.0238 Ω 74.8032 + j 0.178 Ω

designs for maximal gain and 50Ω antenna gain obtained
during process of optimization and the average results of 10
monte-carlo runs, shown in Fig. 6, are tabulated in Table 2.
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Figure. 7: Average of Convergence flow of NSBBO variant
algorithms for 75Ω resistive antenna impedance and maximal
gain

Table 2: The best antenna designs evolved for 50Ω antenna
impedance and maximum gain.

Element Standard BBO PSO
Length Spacing Length Spacing

1(λ) 0.4777 - 0.4744 -
2(λ) 0.4700 0.1901 0.4609 0.2025
3(λ) 0.4436 0.1826 0.4350 0.2107
4(λ) 0.4292 0.2912 0.4290 0.3042
5(λ) 0.4239 0.3553 0.4236 0.3418
6(λ) 0.4287 0.3475 0.4224 0.3529

Best Gain 12.70 dBi 12.57 dBi
Best Imp. 50.1265 + j 0.0124 Ω 50.562 - j 0.507 Ω

Average Gain 12.616 dBi 11.263 dBi
Best Imp. 49.9835 + j 0.0902 Ω 50.099 - j 0.131 Ω

C. Convergence flow of NSBBO migration variants for 75Ω
antenna impedance

Different migration variants of BBO, discussed in Section III
are experimented for gain and antenna impedance of 75Ω si-
multaneously.
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Figure. 8: Convergence flow for different NSBBO migration
variants at 50Ω resistive antenna impedance
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Table 3: The best antenna designs obtained during optimization and average results after 300 iterations for 75Ω impedance
Element Standard BBO Blended BBO IR BBO EBBO

Length Spacing Length Spacing Length Spacing Length Spacing
1(λ) 0.4732 - 0.4738 - 0.4652 - 0.4732 -
2(λ) 0.4780 0.1979 0.4622 0.2185 0.4546 0.2308 0.4693 0.2123
3(λ) 0.4397 0.1631 0.4417 0.3929 0.4333 0.1239 0.4457 0.1741
4(λ) 0.4316 0.2735 0.4289 0.6546 0.4249 0.2295 0.4329 0.2484
5(λ) 0.4193 0.3902 0.4225 1.0289 0.4258 0.3162 0.4221 0.3644
6(λ) 0.4307 0.3360 0.4283 1.3835 0.4114 0.4423 0.4272 0.3758

Best Gain 12.58 dBi 12.58 dBi 12.33 dBi 12.63 dBi
Best Imp. 74.9414 + j 0.036 Ω 75.2441 - j 0.084 Ω 74.9729 + j 0.077 Ω 75.117 + j 0.7644 Ω

Average Gain 11.16 dBi 12.40 dBi 11.843 dBi 12.364 dBi
Best Imp. 74.946 - j 0.024 Ω 75.050 - j 0.073 Ω 74.9633 + j 0.0763 Ω 74.9971 - j 0.0155 Ω

Table 4: The best antenna designs obtained during optimization and average results after 300 iterations for 50Ω impedance
Element Standard BBO Blended BBO IR BBO EBBO

Length Spacing Length Spacing Length Spacing Length Spacing
1(λ) 0.4777 - 0.4764 - 0.4754 - 0.4746 -
2(λ) 0.4700 0.1901 0.4674 0.2168 0.4652 0.2105 0.4653 0.2111
3(λ) 0.4436 0.1826 0.4428 0.1801 0.4419 0.1816 0.4407 0.1994
4(λ) 0.4292 0.2912 0.4272 0.3032 0.4286 0.3068 0.4293 0.2999
5(λ) 0.4239 0.3553 0.4235 0.3401 0.4250 0.3307 0.4233 0.3349
6(λ) 0.4287 0.3475 0.4272 0.3609 0.4280 0.3528 0.4251 0.3719

Best Gain 12.70 dBi 12.68 dBi 12.70 dBi 12.66 dBi
Best Imp. 50.1265 - j 0.0124 Ω 50.1755 - j 0.0833 Ω 49.9502 + j 0.0612 Ω 49.9784 - j 0.0599 Ω

Average Gain 12.616 dBi 12.624 dBi 12.282 dBi 12.593 dBi
Best Imp. 49.98355 + j 0.0902 Ω 49.95325 + j 0.00266 Ω 50.00034 + j 0.03253 Ω 49.97555 + j 0.08409 Ω

Average of 10 Monte-Carlo simulation runs for 30 habi-
tats for each BBO variant algorithm are plotted in Fig. 7
to show convergence flow while achieving (a) maximum an-
tenna gain, (b) 75Ω resistive antenna impedance and (c) zero
reactive antenna impedance.
From the plots, it can be observed that EBBO performs better
amongst all the migration variants, gives the maximum gain,
however, the convergence performance for blended variant is
fast as compared to others during initial iterations. Typically,
the best antenna designs evolved and the average results of 10
monte-carlo runs, depicetd in Fig. 7, are tabulated in Table 3,
respectively.

D. Convergence flow for NSBBO variant algorithms for 50Ω
antenna impedance and maximal gain

Different migration variants of BBO, viz., Standard BBO,
Blended BBO, IR BBO and EBBO are experimented for gain
maximization and evolving antenna impedance 50Ω, simul-
taneously.
Average of 10 Monte-Carlo simulation runs with 50 habitats
for each variant algorithm are plotted in Fig. 8 to analyse
convergence flow while achieving both objectives.
The convergence performance of standard BBO, EBBO and
Blended BBO are comparable, however. IRBBO resulted in
poorest performance under same evolutionary conditions and
300 iterations as shown in Fig. 8, and tabulated in Table 4.

VII. Conclusions and Future Scope

In this paper, NSBBO, its variants and NSPSO algorithms are
investigated for attaining multiple objectives, viz. maximum
gain and antenna impedance of 75Ω and 50Ω. For fair anal-
ysis of convergence performance of stochastic global search
algorithms, average of 10 monte-carlo run is plotted for ev-

ery case and then tabulated along with the best results in Sec-
tion VI. The maximum gain obtained for NSBBO at reactive
impedance of 50Ω using 50 habitats are better as compared
to the approach used in [Singh et al., 2010] i.e., 12.69 dBi.
Investigation of NSBBO algorithms with different mutation
variants and using different models of PSO designing is next
our agenda for improved performance. Further, performance
comparison study can also be conducted between NSBBO,
NSGA and NSPSO, etc.
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