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MULTIOBJECTIVE GAIN-IMPEDANCE OPTIMIZATION OF YAGI–UDA

ANTENNA DESIGN USING DIFFERENT BBO MIGRATION VARIANTS

Etika Mittal and Satvir Singh

SBS State Technical Campus, Ferozepur, Punjab, India

� Biogeography is the study of distribution of biological species, over space and time, among ran-
dom habitats. Recently developed Biogeography-Based Optimization (BBO) is a technique in which
solutions of the problem under consideration are named habitats; just as there are chromosomes
in genetic algorithms (GAs) and particles in Particle Swarm Optimization (PSO). Feature sharing
among various habitats in other words, exploitation, is made to occur because of the migration
operator, whereas exploration of new SIV values, similar to that of GAs, is accomplished with the
mutation operator. In this study, the nondominated sorting BBO (NSBBO) and various migration
variants of the BBO algorithm, reported to date, are investigated for multiobjective optimization of
six-element Yagi–Uda antenna designs to optimize two objectives, viz., gain and impedance, simul-
taneously. The results obtained with these migration variants are compared, and the best and the
average results are presented in the concluding sections of the article.

INTRODUCTION

An antenna is an electrical device that acts as an interface between free-
space radiations and a transmitter (or receiver). The choice of an antenna
depends on many factors such as requisite gain, impedance, bandwidth and
frequency of operation, and so on. The antenna is simple to construct and
has a high gain typically greater than 10dB at VHF and UHF frequency
ranges. It is a parasitic linear array of parallel dipoles, one of which is ener-
gized directly by transmission line while the other acts as a parasitic radiator
whose currents are induced by mutual coupling. Therefore, characteristics
of the antenna are affected by all geometric parameters of array.

A Yagi–Uda antenna was invented in 1926 by Yagi and Uda at Tohoku
University in Japan (Uda and Mushiake 1954; Yagi 1928). Since its invention,
continuous efforts have been put in to optimize its design for desired gain,
impedance, Side Lobe Level and bandwidth, requirements using different
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34 E. Mittal and S. Singh

optimization techniques based on traditional mathematical approaches
(Reid 1946; Bojsen et al. 1971; Cheng 1971, 1991; Shen 1972; Cheng and
Chen 1973; Chen and Cheng 1975) and artificial intelligence (AI) tech-
niques (Jones and Joines 1997; Wang et al. 2003; Venkatarayalu and Ray
2004; Baskar et al. 2005, Li 2007, Singh et al. 2007, 2010). In 1949, Fishenden
and Wiblin (Fishenden and Wiblin 1949) proposed an approximate design
of the Yagi aerials for maximum gain. Ehrenspeck and Poehler have given
a manual approach to maximize the gain of the antenna by varying lengths
and spacings of its elements (Ehrenspeck and Poehler 1959).

Later, the availability of computer softwares at affordable prices made
it possible to optimize antennas numerically. Bojsen et al. proposed another
optimization technique to calculate the maximum gain of Yagi–Uda antenna
arrays with equal and unequal spacings between adjoining elements in
(Bojsen et al. 1971). Cheng et al. have used optimum spacings and lengths to
maximize the gain of the Yagi–Uda antenna (Cheng and Chen 1973, Chen
and Cheng 1975). Later, Cheng proposed an optimum design of the Yagi–
Uda antenna where in the antenna gain function is highly nonlinear (Cheng
1991).

In 1975, John Holland introduced Genetic Algorithms (GAs) as a
stochastic, swarm- based AI technique, inspired by the natural evolution of
species, to evolve optimal design of an arbitrary system for a certain cost
function. Then many researchers investigated GAs to optimize Yagi–Uda
antenna designs for gain, impedance, and bandwidth separately. (Altshuler
and Linden 1997; Jones and Joines 1997; Correia, Soares, and Terada 1999;
Wang et al. 2003; Venkatarayalu and Ray 2003; Kuwahara 2005; Deb et al.
2002) collectively. Baskar et al. have optimized the Yagi–Uda antenna using
Comprehensive Learning Particle Swarm Optimization (CLPSO) and pre-
sented better results than other traditional optimization techniques (Baskar
et al. 2005). Li has used Differential Evolution (DE) to optimize geometrical
parameters of the antenna and illustrated the capabilities of the proposed
method with several Yagi–Uda antenna designs in (Li 2007). Singh et al.
have investigated another useful, stochastic global search and optimization
technique named as Simulated Annealing (SA) to evolve optimal antenna
design in (Singh et al. 2007).

In 2008, Dan Simon introduced yet another swarm based stochastic
optimization technique based on science of biogeography where features
sharing among various habitats, i.e., potential solutions, is accomplished
with migration operator and exploration of new features is done with
mutation operator (Simon 2008). Singh, Kumar, and Kamal (2010) have
presented BBO as a better optimization technique for Yagi–Uda antenna
designs.

Du et al. (2009) proposed the concept of immigration refusal in BBO,
aiming at improved performance. Ma and Simon (2001) introduced another
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Yagi–Uda Antenna Design Using BBO Migration Variants 35

migration operator, called blended migration, to solve constrained optimiza-
tion problems and make BBO convergence faster. Pattnaik, Lohokare, and
Devi (2010) have proposed Enhanced Biogeography Based Optimization
(EBBO) in which duplicate habitats, created due to migration of features,
is replaced with randomly generated habitats to increase the exploitation
ability of BBO algorithm.

The various migration and mutation variants of BBO algorithm were
explored in Singh and Sachdeva (2012a, b). Nondominated sorting
BBO (NSBBO) was proposed and investigated for the performance of
multiobjective optimization of gain and impedance simultaneously of the
Yagi–Uda Antenna in Singh, Mittal, and Sachdeva (2012b). Further, the
performance of NSBBO and NSPSO was compared for simultaneous opti-
mization of gain and impedance of the Yagi–Uda Antenna (Singh, Mittal,
and Sachdeva 2012a).

In this article, NSBBO and various migration variants of the BBO algo-
rithm are proposed and investigated to attain multiple objectives, in other
words, (1) maximum gain and (2) only resistive impedance of 50�, during
Yagi–Uda antenna design optimization.

After this brief historical background survey, the remainder of this arti-
cle is outlined as follows: “Biogeography Based Optimization” is dedicated to
BBO algorithms. In the section following that, the Yagi-Uda antenna design
parameters are discussed. “Multiobjective Optimization” explains multi-
objective problem formulation and the nondominated sorting algorithm.
In “Simulation Results and Discussions,” simulation results are presented
and analyzed. Finally, conclusions and future scope are discussed in the final
section.

BIOGEOGRAPHY-BASED OPTIMIZATION

BBO is a population-based global optimization technique inspired from
the science of biogeography, that is, the study of distribution of animals and
plants among different habitats over time and space. BBO results presented
by researchers are better than other Evolutionary Algorithms (EAs) such as
Particle Swarm Optimization (PSO), Genetic Algorithms (GAs), Simulated
Annealing (SA), and Differential Evolution (DE), and so on (Jones and
Joines 1997; Venkatarayalu and Ray 2003; Baskar et al. 2005; Rattan, Patterh,
and Sohi 2008).

Originally, biogeography was studied by Charles Darwin (Darwin 1995)
and Alfred Wallace (Wallace 2005) mainly as a descriptive study. However,
in 1967, the work carried out by MacAurthur and Wilson (MacArthur and
Wilson 1967) changed this view point and proposed mathematical models
for biogeography and made it feasible to predict numbers of species on
various islands, mathematical models of biogeography describe migration,
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36 E. Mittal and S. Singh

speciation, and extinction of species on various islands. The term island
is used for any habitat that is geographically isolated from other habitats.
Habitats that are well suited residences for biological species are referred to
as having a high Habitat Suitability Index (HSI) value. However, HSI is anal-
ogous to fitness in other EAs whose values depend on many factors such
as rainfall, diversity of vegetation, diversity of topographic features, land
area, and temperature. The factors/variables that characterize habitability
are termed as Suitability Index Variables (SIVs). In other words, HSI is a
dependent variable, whereas SIVs are independent variables.

The habitats with a high HSI tend to have a large population of its
resident species, which is responsible for more probability of emigration
(emigration rate, μ) and less probability of immigration (immigration rate,
λ) due to the natural random behavior of the species. Immigration is the
arrival of new species into a habitat or population, whereas emigration is
the act of leaving one’s native region. On the other hand, habitats with low
HSI tend to have low emigration rate, μ, due to sparse population, however,
they will have high immigration rate, λ. Suitability of habitats with low HSI is
likely to increase with influx of species from other habitats having high HSI.
However, if HSI does not increase and remains low, species in that habitat
becomes extinct, which leads to additional immigration. For sake of simplic-
ity, it is safe to assume a linear relationship between HSI (or population)
and immigration and emigration rate and same maximum emigration and
immigration probability, that is, E = I , as depicted graphically in Figure 1.

The kth habitat values of emigration rate, μk, and immigration rate, λk
are given by Equations (1) and (2).

μk = E ·
(

HSIk

HSImax −HSImin

)
. (1)

E = I

Emigration Rate (μ)

Immigration Rate (λ)

M
ig

ra
tio

n 
R

at
e

HSImin
HSImax

HSI

FIGURE 1 Migration curves.
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Yagi–Uda Antenna Design Using BBO Migration Variants 37

λk = I ·
(

1− HSIk

HSImax −HSImin

)
. (2)

The immigration of new species from high HSI to low HSI habitats could
raise the HSI of poor habitats because good solutions are more resistant to
change than poor solutions, whereas poor solutions are more dynamic and
accept a number of new features from good solutions.

Each habitat, in a population of size NP , is represented by an
M -dimensional vector as H = [SIV1, SIV2, . . . , SIVM ], where M is the number
of SIVs to be evolved for optimal fitness given as HSI = f (H ). The follow-
ing subsections describe the different migration variants of BBO: Standard
BBO (Simon 2008), Blended BBO (Ma and Simon 2011), Immigration
Refusal BBO (Du, Simon, and Ergezer 2009), and Enhanced BBO (Pattnaik,
Lokohare, and Devi 2010).

Standard BBO

Algorithmic flow of standard BBO involves two mechanisms, i.e., migra-
tion and mutation; these are discussed in the following subsections.

Migration

Migration is a probabilistic operator that improves HSI of poor habitats
by sharing features from good habitats. During migration, the ith habitat, Hi
(where i = 1, 2, . . . , N P) uses its immigration rate, λi given by Equation (2),
to probabilistically decide whether to immigrate or not. In case immigration
is selected, then the emigrating habitat, Hj, is found probabilistically based
on emigration rate, μj given by Equation (1). The process of migration is
completed by copying values of SIVs from Hj to Hi at random chosen sites.
The pseudocode of the migration operator is depicted in Algorithm 1.

Mutation

Mutation is another probabilistic operator that modifies the values of
some randomly selected SIVs of some habitats that are intended for explo-
ration of search space for better solutions by increasing the biological
diversity in the population. Here, higher mutation rates are investigated in
habitats that are, probabilistically, participating less in the migration process.
The mutation rate, mRate, for the kth habitat is calculated as Equation (3)

mRatek = C ×min (μk, λk) . (3)
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38 E. Mittal and S. Singh

Algorithm 1 Pseudocode for Standard Migration

for i = 1 to NP do
Select Hi with probability based on i

if Hi is selected then
for j = 1 to NP do

Select Hj with probability based on µj

if Hj is selected
Randomly select an SIV(s) from Hj

Copy these SIV(s) in Hi

end if
end for

end if
end for

Algorithm 2 Pseudocode for Mutation
mRate = C x min(µk , k)
for n = 1 to NP do

for j = 1 to number of SIV(s)
Select Hj(SIV) with mRate
if Hj(SIV) is selected then

Replace Hj(SIV) with randomly generated SIV
end if

end for
end for

where μk and λk are emigration and immigration rates, respectively, given by
Equations (1) and (2) corresponding to HSIk. To reduce fast generation of
duplicate habitats, here, C is chosen as 3, to keep the exploitation rate much
higher compared to other EAs. The pseudocode of the mutation operator is
depicted in Algorithm 2.

Blended BBO

The blended migration operator is a generalization of the standard
BBO migration operator and was inspired by blended crossover in GAs
(McTavish and Restrepo 2008). In blended migration, an SIV value of the
immigrating habitat, ImHbt, is not simply replaced by an SIV value of the
emigrating habitat, EmHbt, as happened in the standard BBO migration
operator. Rather, a new solution feature, SIV value, comprises two compo-
nents as ImHbt (SIV )← α · ImHbt (SIV )+ (1− α) · EmHbt (SIV ). Here, α is a
random number between 0 and 1. The pseudocode of blended migration is
depicted in Algorithm 3.
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Yagi–Uda Antenna Design Using BBO Migration Variants 39

Immigration Refusal BBO

In BBO, if a habitat has a high emigration rate, that is, the probability
of emigrating to other habitats is high and the probability of immigration
from other habitats is low. However, the low probability does not mean that
immigration will never happen. Once in a while, a highly fit solution might
receive solution features from a low-fit solution that might degrade its fit-
ness. In such cases, immigration is refused in order to prevent degradation
of HSI values of habitats. This BBO variant with conditional migration is
termed Immigration Refusal; its performance with a testbed of benchmark
functions is encouraging (Du, Simon, and Ergezer 2009). The pseudocode
of immigration refusal migration is depicted in Algorithm 4.

Enhanced BBO

The standard BBO migration operator tends to create duplicate solu-
tions, which decreases the diversity in the population. To prevent this
diversity decrease in the population, duplicate habitats are replaced with
randomly generated habitats. This leads to increased exploration of new
SIV values. In EBBO, a clear duplicate operator is integrated in to the basic
BBO algorithm to improve its performance. The migration pseudocode of
enhanced BBO is depicted in Algorithm 5.

ANTENNA DESIGN PARAMETERS

The Yagi–Uda antenna consists of three types of elements: (1) Reflector–
largest among all and responsible for blocking radiations in one direction.
(2) Feeder–fed with the signal from transmission line to be transmitted and
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40 E. Mittal and S. Singh

Algorithm 4 Pseudocode for Immigration Refusal BBO

for  i = 1 to NP do 
      Select Hi with probability based on i 
      if Hi is selected then  
          for  j = 1 to NP do 
               Select Hj with probability based on µj 
               if Hj is selected 
  if (fitness(Hj) > fitness(Hi)) 
                           apply migration       
     end if 
    end if 

          end for 
      end if  
end for 

Algorithm 5 Pseudocode for Enhanced BBO

for  i = 1 to NP do 
      Select Hi with probability based on i 
      if Hi is selected then  
          for  j = 1 to NP do 
               Select Hj with probability based on µj 
               if Hj is selected 
  if (fitness(Hj) = fitness(Hi)) 
                           eliminate duplicates       
     end if 
    end if 

          end for 
      end if  
end for 

(3) Directors–usually more than one in number and responsible for unidi-
rectional radiations. Figure 2 depicts a typical six-wire Yagi–Uda antenna in
which all wires are placed parallel to the x-axis and along the y-axis. The mid-
dle segment of the reflector element is placed at origin, x = y = z = 0, and
excitation is applied to the middle segment of the feeder element.
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Z

Y

X

Li Si

Directors

Feeder

Reflector

FIGURE 2 Six-element Yagi–Uda Antenna.

Designing a Yagi–Uda antenna involves determination of wire-lengths
and wire-spacings in between to get maximum gain and desired impedance,
and so forth, at an arbitrary frequency of operation. An antenna with N
elements requires 2N − 1 parameters, that is, N wire lengths and N − 1 spac-
ings, that are to be determined. These 2N − 1 parameters, collectively, are
represented as a string referred to as a habitat in BBO, given as Equation (4).

H = [L1, L2, . . . , LN , S1, S2, . . . , SN−1] , (4)

where LS are the lengths and SS are the spacing of antenna elements.
An incoming field sets up resonant currents on all the antenna elements
which re-radiate signals. These re-radiated signals are then picked up by
the feeder element, which leads to total current induced in the feeder
equivalent to combination of the direct field input and the re-radiated
contributions from the director and reflector elements. This makes highly
nonlinear and complex relationships between the antenna parameters and
its characteristics such as gain and impedance.

MULTIOBJECTIVE OPTIMIZATION

Multiobjective Problems

In single-objective optimization, an optimal solution is easy to obtain
as compared to a multiobjective scenario where one solution that could
be globally optimal with respect to all objectives may not exist. Objectives
under consideration might be conflicting in nature; improvement in one
objective could cause declination in other objective(s). One way to solve a
multiobjective problem (MOP) is to scalarize the vector of objectives into
one objective by averaging the objectives with a weight vector. This process
allows a simpler optimization algorithm to be used, however, the obtained
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42 E. Mittal and S. Singh

solution largely depends on the weight vector used in the scalarization pro-
cess. A common difficulty with MOP is the conflicting nature of objectives
where no solution that could be globally the best for all objectives is feasi-
ble. Thus, a most favorable solution is opted, which offers the least objective
conflict.

The solution to multiobjective optimization problems result in Pareto-
optimal solutions instead of a single optimal solution in every run. There
exists a set of solutions that are the best trade-off solutions, impor-
tant for decision making and often superior to the rest of the solu-
tions when all objectives are considered; however, inferior for one or
more objectives. These solutions are termed as Pareto-optimal solutions or
nondominated solutions and others as dominated solutions. Every solution
from a nondominated set is acceptable because none of them is better than
its counterpart. However, final selection of a solution is done by the designer
based on nature of the problem under consideration.

Nondominated Sorting

The problem presented in this article of optimizing an antenna design
has two objectives, viz. (1) antenna impedance and (2) maximum antenna
gain. Desired antenna impedance, i.e., (Re + jIm)�, is formulated as a fitness
function, f 1, given as Equation (5), which is required to be minimized.

f1 =
∣∣Re − desiredimpedance

∣∣+ |Im| , (5)

Whereas, the second objective of gain maximization is also converted into a
minimization fitness function, f 2, given as Equation (6):

f2 = 1
Gain

. (6)

Suppose every solution, in a swarm of NP solutions, yields f1k and f2k as fitness
values (where k = 1, 2, . . . , N P), using Equations (5) and (6), that belongs
to either a nondominated solution set, P , or a dominated solution set, D.
An ith solution in set P dominates the jth solution in set D if satisfies the con-
dition of dominance, i.e., f1i ≤ f1j and f2i ≤ f2j , where both objectives are to
be minimized. This condition of dominance is checked for every solution in
the universal set of N P solutions to assign it to either P set or D set. Solution
members of set P form the first nondominated front, i.e., the Pareto opti-
mal front, and then remaining solutions, those belong to set D, are made
to face same condition of dominance among themselves to determine the
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True Optimal Pareto Front

Non dominated Front 2

Non dominated Front 3

d2

d5

d6

1

2

3
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6
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8

f1

f2

FIGURE 3 Nondominated sorting and Pareto fronts.

next nondominated front. This process continues until all solutions are clas-
sified into different nondominated fronts, as shown in Figure 3. Preference
order of solutions is to be based on the designer’s choice, however, here,
Euclidian distance is determined from origin for every member solution in
a nondominated front and are selected in ascending order. The pseudocode
of nondominated sorting approach is depicted in Algorithm 6.

SIMULATION RESULTS AND DISCUSSION

As BBO is a swarm-based stochastic optimization algorithm; to present
fair analysis, a six-wire Yagi–Uda antenna design is optimized for 10 times
using 300 iterations and 50 habitats (particles). The universe of discourses
to search optimal values of wire lengths and wire spacings are 0.40λ –
0.50λ and 0.10λ – 0.45λ, respectively. However, crosssectional radius and
segment size for all wires are kept constant, in other words 0.003397λ

and 0.1λ, respectively, where λ is the wavelength corresponding to fre-
quency of operation, 300MHz. The C++ programming platform is used for
algorithm coding, whereas method of moments-based software, Numerical
Electromagnetic Code (NEC2) (Burke and Poggio 1981), is called, using
system command to evaluate antenna designs. Both objectives, gain and
impedance, are optimized using two fitness functions, given by Equations
(5) and (6).

The average of 10 Monte-Carlo simulation runs are plotted to analyze
convergence flow while achieving (1) maximum antenna gain, (2) Re =
50�, in other words, resistive antenna impedance of 50�, and (3) Im = 0�,
or, zero reactive antenna impedance, in Figure 4. From the plots, it can be
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44 E. Mittal and S. Singh

observed that the best compromised solution, during initial iterations, some-
times leads to poor solutions in terms of gain or impedance. However, with
increasing numbers of iterations the best compromised solution improves
in aggregation that could improve further, if the maximum iteration num-
ber is kept high. The best antenna designs obtained during the process of
optimization and the average results of 10 Monte-Carlo runs, depicted in
Figure 4, after 300 iterations are tabulated in Table 1.

CONCLUSIONS AND FUTURE SCOPE

In this article, NSBBO along with different migration variants of the
BBO algorithm are investigated for attaining multiple objectives: maximum
gain and antenna impedance. The results obtained for multiobjective opti-
mization of the standard NSBBO are found to be better compared to other
multiobjective optimization techniques discussed in (Singh, Kumar, H., and
Kamal 2010). It can be observed from simulation results that the NSBBO
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2

1

0

–1

–2
50 100 150 200 2500 300

Iterations

Im
pe

da
nc

e 
(I

m
)

(c) Reactive Antenna Impedance

FIGURE 4 Convergence flow for different NSBBO migration variants at 50� resistive antenna
impedance.

with blended migration presents better convergence flow in terms of achiev-
ing gain and only resistive impedance of 50� as compared to different
variants of BBO over limited 300 iterations. NSBBO has been a good choice
for optimizing Yagi-Antenna for multiple objectives and can be tried on
other antennas such as antenna arrays as well.
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