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Butterfly optimization algorithm is a newcomer in the category of nature inspired optimization algo-
rithm, which is inspired by the food foraging behavior of butterflies. It has shown remarkable per-
formance on various global optimization problems. One of the important parameters which critically
affect its performance is sensory modality, which accounts for sensing the different amount of fra-
grances emitted by butterflies of the search space and guide the butterflies to move towards the
direction of the selected fragrance/butterfly. However, in the basic butterfly optimization algorithm,
fixed value of sensory modality is adopted throughout all generations. This results in two problems,
(1) the algorithm will easily get trapped in local optima and (2) low accuracy. In order to solve these
problems, an improved butterfly optimization algorithm is proposed which employs variable sensory
modality parameter strategy. Various benchmark functions are used to validate the performance of
the proposed algorithm. Its performance is compared with the basic butterfly optimization algorithm
and three other population-based optimization algorithms viz. artificial bee colony, firefly algorithm,
and particle swarm optimization. The simulation results demonstrate that the proposed algorithm
performs better, or at least comparable, in terms of the final solution quality and convergence rate.

Keywords: Butterfly Optimization Algorithm, Variable Sensory Modality Parameter, Global
Optimization, Local Optima.

1. INTRODUCTION
Real world problems are very complex in nature and
require optimal solution in less computational time. How-
ever, traditional methods failed to provide efficient results
in shorter amount of time.1 To overcome the limita-
tions of traditional methods, nature inspired optimiza-
tion algorithms came into existence.2 Nature inspired
optimization algorithms have received much attention by
various researchers in the past.3 Their potential has rec-
ognized themselves as global optimization techniques in
various real world complex problems.4 These algorithms
find their source of inspiration in nature. Various algo-
rithms have been proposed in the past like Particle Swarm
Optimization (PSO),5 Firefly Algorithm (FA),6 Artificial
Bee Colony (ABC)7 and many more.8�9 These algorithms
demonstrate improved performances when compared with
conventional optimization techniques, especially when
applied to solve non-convex optimization problems.

∗Author to whom correspondence should be addressed.

Butterfly Optimization Algorithm (BOA) is a nature
inspired optimization algorithm used for solving global
optimization problems.10 The underlying mechanism of
BOA is to mimic the food searching abilities of bio-
logical butterflies. Preliminary studies suggest that the
BOA demonstrate superior results, when compared with
other population based optimization algorithms.11 How-
ever, BOA has tendency to show premature converge to
local optima. In order to improve the performance of BOA,
recently chaos is introduced in BOA so as to increase the
global search mobility for global optimization problems.12

As a matter of fact, in the basic BOA, the sensory modal-
ity parameter which distinguishes different amount of fra-
grances emitted by the butterflies is constant throughout
all the generations. This is undoubtedly wrong and it may
affect the proper balance of global and local search. The
sensory modality parameter must be adjusted adaptively
and dynamically in order to set appropriate value of sen-
sory modality for each generation. So in this study, a
variable sensory modality parameter strategy is employed
in BOA. Moreover, in the basic butterfly optimization
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algorithm, the randomness is employed using lèvy flights
whereas in the proposed algorithm pseudo-random num-
bers are used.
The rest of this paper is structured below. To start with, a

brief background on the BOA is provided in Section 2. Our
proposed BOA with variable sensory modality parameter
strategy is presented in Section 3. Different benchmark
functions which are used in this study are described in
Section 4, and finally, conclusions are drawn in Section 5.

2. BUTTERFLY OPTIMIZATION ALGORITHM
Nature inspired optimization algorithms have gained much
attention by various researchers in the past.3 Butterfly
Optimization Algorithm (BOA) belongs to the same class
of optimization algorithms. It is basically inspired by the
food foraging behavior of butterflies. In BOA, these but-
terflies are used as search agents in order to perform
optimization.11 Biologically, butterflies have sense recep-
tors, which are used to smell/sense fragrance of their
food/flowers. These sense receptors are called chemore-
ceptors which are scattered over the butterfly’s body parts
like legs, palps, antennae etc.13 In BOA, it is assumed
that each butterfly is able to generate fragrance with some
intensity. This fragrance is further correlated with fitness of
the butterfly. This means that whenever a butterfly moves
from one position to other particular position in the search
space, its fitness will vary accordingly. Now, the fragrance
which is generated by butterflies is propagated over dis-
tance to all other butterflies in the region. The propagated
fragrance is sensed by other butterflies and a collective
social knowledge network is formed. Whenever a butter-
fly senses fragrance from the best butterfly in the search
space, it takes a step towards the best butterfly and this
phase is termed as global search phase of BOA. In the
another scenario, when a butterfly is not able to sense fra-
grance of any other butterfly in the search space, it will
take random steps and this phase is termed as local search
phase in BOA.
The main strength of BOA lies in its mechanism to mod-

ulate fragrance in the algorithm. In order to understand the
modulation, first it should be discussed that how any sense
like sound, smell, heat, light etc. is processed by a stimu-
lus of a living organism. The basic concept of sensing is
dependent on three vital parameters i.e., sensory modality
(c), stimulus intensity (I ) and power exponent (a). Sen-
sory modality defines the method by which the form of
energy is measured and processed by the sensors. Differ-
ent modalities/senses can be smell, sound, light, tempera-
ture or pressure etc. and in BOA, it is fragrance. In BOA,
many butterflies emit fragrance at the same time, it is their
sensory modality which allows butterflies to sense and dif-
ferentiate these fragrances from each other. I represents
the magnitude of the physical/actual stimulus and in BOA,
it is correlated with the fitness of the butterfly/solution
i.e., a butterfly with higher fragrance or greater fitness

value attracts other butterflies in that region. The param-
eter a allows response compression i.e., as the stimulus
gets stronger, insects become increasingly less sensitive to
the stimulus changes.14�15 Summarizing, the natural phe-
nomenon of butterflies is based on two imperative issues:
(1) variation of I , (2) formulation of f . For simplicity, in
BOA, I of a butterfly is associated with encoded objective
function. However, f is relative i.e., it should be sensed
by other butterflies. Therefore, considering these concepts,
in BOA, the fragrance is formulated as a function of the
physical intensity of stimulus15 as follows:

fi = cIa (1)

where fi is the perceived magnitude of fragrance, i.e.,
how stronger the fragrance is perceived by ith butterfly,
c is the sensory modality, I is the stimulus intensity and
a is the power exponent dependent on modality, which
accounts degree of absorption. There are two important
phases in the BOA, they are; global search phase and local
search phase. In global search phase, the butterfly takes a
step towards the fittest butterfly/solution g∗ which can be
represented as:

xt+1
i = xt

i + �xt
i − g∗ × lèvy����× fi (2)

where xt
i is the solution vector xi for ith butterfly in iter-

ation t. Here g∗ represents the best solution found among
all the solutions in current generation. The fragrance of
ith butterfly is represented by fi while step size is repre-
sented by �.

Algorithm 1 (Buttery Optimization Algorithm).

1: Objective function f (x), x= �x1 � � � xd�
where d is number of dimensions.

2: Generate initial population of butterflies
xi = �i = 1�2� � � �n�

3: Find the best solutions g∗ in the initial population
4: Define switch probability p ∈ �0�1�
5: while stopping criteria not met do
6: for each butterfly in population do
7: Draw rand from a uniform distribution

in [0, 1]
8: Calculate fragrance of the butterfly
9: if rand < p then
10: Global search using Eq. (2)
11: else
12: Randomly choose j and k

among all the solutions
13: Do Local search using Eq. (3)
14: end if
15: Evaluate new solutions
16: If new solutions are better, update them

in population
17: end for
18: Find the current best solution g∗

19: end while
20: Output the best solution found.
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Local search phase can be represented as:

(3)

where xt
j and xt

k are jth and kth butterflies from the solu-
tion space. If xj and xk belongs to the same sub-swarm
and � is the step size, then Eq. (3) becomes a local random
walk. The food searching process can occur at local as well
as global level, so considering this, a switch probability p
is used in BOA to control the common global search and
intensive local search. The above mentioned steps frame
the complete algorithm of Butterfly Optimization Algo-
rithm and its pseudocode is presented in Algorithm 1.

3. THE PROPOSED BUTTERFLY
OPTIMIZATION ALGORITHM

3.1. Analysis of Basic Butterfly
Optimization Algorithm

Every nature inspired optimization algorithm, must bal-
ance the trade-off between global and local search, as it
is very crucial in finding the optima efficiently. During
the early stages of optimization, it is always desired that
the solutions are encouraged to wander through the entire
search space, without gathering around the local optima.
Whereas in order to find the optimum solution, it is essen-
tial to converge towards the global optimum solution in
the later stages of optimization.16

Sensory modality c is one of the important parameters in
the basic butterfly optimization algorithm. The importance
of c can be judged from the fact that it enables each butter-
fly in the search process to sense the fragrances emitted by
other butterflies and guide the search towards those butter-
flies. This means that better the sensing mechanism, more
efficient the results will be. However, the static method
of setting c will not be adaptive to complex real world
problems. It will effect the performance of algorithm in
two ways, firstly, if a large value of c is used then it may
skip the best optimal solution in the early stage of opti-
mization which will reduce the search performance of the
algorithm. Secondly, if a small value of c is used then it
may fall into local optima trap problem and will result in
premature convergence.

Therefore, the sensory modality has a great impact on
the searching ability of butterflies. The value of c should
be increase rapidly with small the number of generations
while it should increase slowly with the large number
of generations. This will definitely increase the effective-
ness of the algorithm. Considering the above problems and
importance of sensory modality parameter, the algorithm
is modified in such a manner that the butterflies are able
to change the value of c dynamically.

3.2. Variable Sensory Modality Parameter of Butterfly
Optimization Algorithm

By using static value of sensory modality c the search-
ing process of butterfly optimization algorithm is not used

efficiently. Theoretically, a large value of c will enable
the butterflies to explore new search space, however, it
will have adverse effect on the convergence towards global
optimum solution. Whereas if a small value of c is used,
the results will be perverse. This means c has great effect
on the searching abilities of the butterflies and if the value
of c is modified according to the requirements of stage of
optimization process, it will prove beneficial to the perfor-
mance of the algorithm. So in this study, a dynamic and
adaptive adjusting strategy of sensory modality is designed
and used. The sensory modality c can be calculated as
following:

ct+1 = ct + �0�025/�ct×MaxIterations�� (4)

where t is the current number of iterations and MaxItera-
tions is the maximum number of iterations. The increasing
nature of dynamic parameter strategy is graphically illus-
trated in Figure 1. It can be analyzed from this figure that
the value of c is small initially and then it increases with
the increase in number of iterations. It will help the butter-
flies to improve their search abilities. Another modification
which is proposed in the basic butterfly algorithm is that
in Eqs. (2) and (3), lèvy flights are used in which the step-
lengths have a probability distribution that is heavy-tailed.
In this study, pseudorandom numbers are used instead of
lèvy flights. To take into account the above discussions, the
global search and local search phase of proposed Improved
Butterfly Optimization Algorithm (IBOA) are described in
Eqs. (5) and (6) respectively.

(5)

where xt
i is the solution vector xi for ith butterfly in iter-

ation number t. Here g∗ represents the current best solution
found among all the solutions in current stage. Fragrance
of ith butterfly is represented by fi and r is a random
number in �0�1�.
Local search phase can be represented as:

2 (6)

where xt
j and xt

k are jth and kth butterflies from the solu-
tion space and r is a random number in �0�1�.

Figure 1. Variable sensory modality.
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4. SIMULATION RESULTS AND ANALYSIS
There are various benchmark functions which are used
by researchers to validate new optimization algorithms.17

However, no standard set of functions is defined but still
different benchmark functions are recommended by vari-
ous researchers in the past.18 These benchmark functions
are categorized on basic of modality, dimensionality and
separability. In this paper, a diverse subset of benchmark
functions is chosen in order to validate the proposed algo-
rithm, as shown in Table I.19 In the first category, unimodal
functions, i.e., f1− f6, which tests the convergence speed
of the algorithm are used. Then, the most difficult cate-
gory of functions i.e., multimodal functions, f7−f15, which
test the algorithm’s capability to find global optima when
the number of local optima increases exponentially with
problem dimension. Further in the third category of dimen-
sionality, the algorithm is validated on low dimensional
functions i.e., f1� f2 and f11−f15, and high dimensional
functions i.e., f3−f10. In the last category of separability,
the separable functions which are used in this study are
f3−f5, f7, f8, f10, f14 and f15. In addition to these cate-
gories, step function i.e., f3 which is discontinuous and has
only one minima is used. Special attention should be paid
to the noisy (Quartic) function i.e., f4, as these challenges
occur frequently in real-world applications.

4.1. Experimental Setup
All the experiments are conducted under the same condi-
tions in order to obtain fair results as shown in Ref. [20].

Table I. Benchmark functions used in current experimental study.

S. no. Benchmark function Formula Dim Range Optima

f1 Booth f �x�= �x0+2x1 −7�2 + �2x0+x1−5�2 2 (−10�10) 0
f2 Matyas f �x�= 0�25�x2

0+x2
1�−0�48x0x1 2 (−10�10) 0

f3 Step f �x�=
n−1∑
i=0

��xi�+0�5�2 30 (−100�100) 0

f4 Quartic function with noise f �x�=
n−1∑
i=0

x4
i +N�0�1� 30 (−1�281�28) 0

f5 Schwefel 2.21 f �x�=max��xi�� 30 (−10�10) 0

f6 Rosenbrock f �x�=
n−1∑
i=1

100�xi −x2
i−1�

2+ �1−xi−1�
2 30 (−10�10) 0

f7 Sphere f �x�= n∑
i=1

x2
i 30 (−100�100) 0

f8 Levy f �x�= sin2�3�x0�+
n−2∑
i=0

�xi −1�2�1+ sin2�3�xi+1��+ �xn−1−1��1+ sin2�2�xn−1�� 30 (−10�10) −21.5023

f9 Griewank f �x�= 1
4000

n−1∑
i=1

�xi −100�2−
n−1∏
i=1

cos
(
xi −100√

i−1

)
+1 30 (−600�+600) 0

f10 Schwefel 2.26 f �x�=−
n−1∑
i=0

xi sin
√
xi 30 (−500�500) −12569.5

f11 Power sum f �x�=
n−1∑
k=0

([n−1∑
i=0

xk+1
i

]
−bk

)2

4 �0�n� 0

f12 Shekel4.5 f �x�=
m∑
i=0

1

�x−Ai�
t
�x−Ai�+ci

4 (0�10) −10.1532

f13 Bohachevsky f �x�= x2
0 +2x2

1 −0�3cos�3�x1�−0�4cos�4�x1�+0�7 2 (−100�100) 0

f14 Shubert
( 5∑

i=1

i cos��i+1�x0+ i

)( 5∑
i=1

i cos��i+1�x1+ i

)
2 (−10�10) −186.73

f15 Easom f �x�=− cos�x0�cos�x1� exp�−�x0 −��2−�x1−��
2 2 (−100�100) −1

In this study, basic version of ABC is used which employs
only one control parameter $limit$ whose value is cal-
culated by limit = SN ×D where D is the dimension
of the problem and SN is the number of food sources
or employed bees. For PSO, we used only global learn-
ing (no local neighborhoods), an inertial constant = 0.3,
a cognitive constant= 1, and a social constant for swarm
interaction = 1. For FA, 	 = 0�2, 
0 = 1 and � = 1 are
used. For the proposed IBOA and BOA, the value of sen-
sory modality c and power exponent a is set to 0.01 and
0.1 respectively.11 It is worth mentioning here that in IBOA
and in basic BOA, initially the value of sensory modal-
ity c is set to 0.01. In IBOA it is varied according to the
Eq. (4), whereas in basic BOA is fixed. These parameters
are set as reported by the authors in the past.7�11�21�22

Rigorous nonparametric statistical framework is used to
compare the performance of the proposed algorithm with
other selected optimization algorithms. For each run of the
algorithm, all initial solutions of the population are ran-
domly generated. The population size n is fixed to 30 for
all the algorithms. Dimensions and range of the bench-
mark functions is given in the Table I. The proposed IBOA
is implemented in C++ and compiled using Qt Creator
2.4.1 (MinGW) under Microsoft Windows 8 operating sys-
tem. All simulations are carried out on a computer with an
Intel (R) Core (TM) i5-3210@2.50 Ghz CPU.

4.2. General Performance of IBOA
In order to better analyze the performance analysis of pro-
posed IBOA against the basic BOA, simulation results of
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Table II. Simulation results of IBOA and BOA.

BEST Worst Mean Std. dev.

IBOA BOA IBOA BOA IBOA BOA IBOA BOA

f1 4�12E−06 1�32E−03 2�16E−03 7�04E−02 6�83E−04 6�04E−02 6�70E−04 2�12E−02
f2 2�59E−17 3�81E−05 7�71E−15 6�10E−04 1�11E−15 1�74E−03 2�38E−15 2�10E−04
f3 0�00E+00 5�10E+01 0�00E+00 7�40E+01 0�00E+00 1�26E+02 0�00E+00 6�92E+00
f4 9�99E−04 6�73E−01 2�22E−03 8�01E−01 1�59E−03 7�43E+00 4�36E−04 4�08E−02
f5 3�44E−10 2�02E−01 5�72E−10 2�28E−01 4�51E−10 2�15E+00 8�19E−11 9�01E−03
f6 2�87E+01 2�88E+01 2�89E+01 2�89E+01 2�88E+01 9�59E+01 3�12E−02 4�13E−02
f7 1�90E−114 6�33E−44 1�90E−103 4�35E−37 1�90E−104 9�07E−37 6�01E−104 1�63E−37
f8 6�20E−01 7�71E−01 8�41E−01 1�93E+00 6�97E−01 9�93E+00 7�24E−02 3�90E−01
f9 8�97E−13 8�70E−02 1�61E−12 1�01E−01 1�44E−12 9�41E−01 2�12E−13 4�55E−03
f10 −3�03E+03 −3�23E+03 −1�39E+03 −1�50E+03 −1�77E+04 −1�57E+04 2�92E+02 4�90E+02
f11 4�25E−02 2�02E−02 7�30E−01 4�81E−01 2�42E−01 3�45E−01 1�87E−01 1�47E−01
f12 1�66E−16 2�46E−02 4�21E−13 4�57E−01 5�01E−14 3�21E+00 1�31E−13 1�89E−01
f13 1�71E+00 1�72E+00 1�71E+00 1�72E+00 1�71E+00 1�72E+00 0�00E+00 0�00E+00
f14 3�18E−12 4�13E−01 3�25E−11 7�06E−01 2�30E−11 5�46E+00 8�62E−12 7�72E−02
f15 3�00E+00 3�57E+00 3�73E+00 3�06E+01 3�13E+00 9�36E+00 2�29E−01 8�70E+00

best solutions, worst solutions, mean value and standard
deviations on IBOA and basic butterfly optimization algo-
rithm are presented in Table II. The best values are high-
lighted in bold. The number of iterations is fixed to 500 in
this comparative study. It can analyzed from the simula-
tion results that the proposed approach is superior than the
basic butterfly optimization algorithm in terms of precision
and efficiency.

Table III. Comparative performance of proposed algorithm with other approaches.

S. No. ABC BOA IBOA FA PSO

f1 Mean 2�07E+04 1�55E−01 1�99E−03 4�64E−10 4�68E−09
Std. dev. 1�02E+04 1�21E−01 2�37E−03 2�50E−10 7�01E−09

f2 Mean 1�86E+04 2�69E−03 5�95E−09 5�65E−12 1�84E−09
Std. dev. 9�11E+03 1�28E−03 4�76E−09 3�46E−12 3�06E−09

f3 Mean 6�31E+04 5�84E+02 0�00E+00 1�94E+03 1�04E+04
Std. dev. 2�35E+04 1�03E+01 0�00E+00 8�57E+02 3�32E+03

f4 Mean 5�66E+04 2�80E+01 3�64E−03 3�42E+05 2�11E+01
Std. dev. 2�89E+04 2�49E+00 1�15E−03 2�26E+05 1�43E+00

f5 Mean 2�63E+04 2�81E+00 8�25E−05 1�56E+00 7�73E+00
Std. dev. 1�04E+04 8�24E−02 7�33E−06 4�86E−01 7�61E−01

f6 Mean 3�59E+04 2�89E+02 2�89E+01 3�38E+03 6�32E+01
Std. dev. 1�14E+04 5�06E+00 2�95E−02 1�91E+03 3�23E+01

f7 Mean 6�97E+04 1�11E−04 1�03E−11 5�26E+10 1�26E+04
Std. dev. 7�82E+03 1�15E−04 2�95E−11 3�34E+09 5�48E+03

f8 Mean 3�73E+04 1�17E+01 8�06E−01 4�51E+01 7�90E+01
Std. dev. 2�33E+04 7�80E−01 1�22E−01 1�60E+00 2�91E+01

f9 Mean 4�49E+04 1�73E+01 1�16E−06 2�18E+01 8�49E+01
Std. dev. 2�84E+04 6�69E−01 1�88E−07 8�09E+00 2�91E+01

f10 Mean 2�33E+04 −1�27E+04 −2�37E+04 −3�89E+03 5�21E+01
Std. dev. 1�07E+04 3�95E+02 4�13E+02 5�36E+02 1�70E+01

f11 Mean 1�70E+04 2�00E+00 4�38E−01 1�15E+08 5�21E−01
Std. dev. 7�67E+03 3�31E−01 1�81E+01 1�27E+08 4�37E−01

f12 Mean 4�99E+04 4�65E+00 4�58E−07 1�79E−07 4�30E−06
Std. dev. 2�88E+04 3�43E+00 6�17E−07 1�54E−08 8�10E−06

f13 Mean 2�06E+01 1�72E+01 1�72E+00 9�10E+00 2�00E+01
Std. dev. 1�10E−01 0�00E+00 0�00E+00 1�01E+00 7�25E−02

f14 Mean 1�95E+11 9�81E+00 3�85E−05 1�77E+01 1�02E+02
Std. dev. 4�12E+11 1�73E+00 3�31E−05 3�71E+00 3�14E+01

f15 Mean 1�69E+01 5�31E+01 5�31E+00 5�70E+00 3�00E+00
Std. dev. 2�12E+01 4�80E+00 8�75E+00 8�54E+00 0�00E+00

In order to fully evaluate the proposed algorithm, it
is compared with other state-of-art approaches viz. Arti-
ficial Bee Colony (ABC), Firefly Algorithm (FA) and
Particle Swarm Optimization (PSO). The reason behind
the selection of these algorithms is their applicability to
world wide applications. These algorithms have shown
good performance in the past when applied to real world
problems.23
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Figure 2. The convergence curves of f3.

The number of iterations used for this particular compar-
ative analysis is fixed to 100 for all the algorithms. From
Table III, it can be observed that among all the approaches
used, IBOA performs superior in eleven benchmark func-
tions among the fifteen benchmark functions used in this
study. Moreover, in the remaining four functions, IBOA
demonstrate competitive results. It is worth pointing out
that IBOA has shown better results than BOA on every
benchmark function. This clearly shows the dominance of
IBOA over BOA and other approaches.
Due to limitations of space, only three representative

convergence graphs on benchmark functions are shown in
Figures 2–4.
From Figures 2 and 3, it is analyzed that IBOA performs

significantly better than BOA and other population based
algorithms. By carefully looking at Figure 3, it can be ana-
lyzed that in the beginning of the optimization process FA
converges faster than IBOA however in the later stages of
optimization the IBOA is able to improve its solution qual-
ity, steadily. The reason might be that in IBOA, the varied
value of sensory modality of the butterflies allowed the
butterflies to find better solutions in the search space. The
striking potential of proposed algorithm can be analyzed
from the convergence curves shown in the Figure 4. The
proposed algorithm’s performance is also well in terms of
convergence. FA shows faster convergence than IBOA in
first ten iterations, however IBOA shows its superiority
afterwards by improving the quality of solutions.

Figure 3. The convergence curves of f5.

Figure 4. The convergence curves of f8.

From the simulation results it can be analyzed that
the variation of sensor modality proved to a significant
improvement in the butterfly optimization algorithm. In the
improved version of butterfly optimization algorithm, the
butterflies are able to better explore the search space which
lead them to find better solutions. The improvement has
enhanced the performance of butterfly optimization algo-
rithm in terms of convergence as well as solution quality.

5. CONCLUSION
In the present work, a variable sensor modality butterfly
optimization algorithm is proposed for global optimiza-
tion problems. The proposed algorithm uses a dynamic
and adaptive strategy to modify the sensor modality which
was fixed to a constant value in basic butterfly opti-
mization algorithm. The variable value of sensor modal-
ity enhanced the searching abilities of the butterflies.
Fifteen benchmark functions are used to investigate the
performance of proposed algorithm against basic butterfly
optimization algorithm and other population based opti-
mization algorithms. The results demonstrated that in the
proposed algorithm, the butterflies make effective use of
their information to perform exploration and exploita-
tion, in an efficient manner, than basic BOA. In the
present study only unconstrained problems are considered,
whereas it will be interesting to see the performance of
improved butterfly optimization algorithm on constrained
problems.
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